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1. Statement of the problem studied

Objective

The objective of this ARO project is to lay the control-theoretic foundation of controlling a
hyper-redundant robotic arm or flexible robotic actuators, often represented by a distributed
parameter system or a partial differential equation. We establish a model-guided approach for
fabrication and control of flexible 3-D cellular actuator structures based on Electro-Active
Polymers (EAPS) or other flexible materials. A model-guided approach for control of flexible
structures is epitomized by the PI’s PDE boundary control framework applied to articulated
structures. The combined theoretical and experimental modeling framework would enable the
exploitation and optimization of different actuator designs to achieve desirable dynamic and
material characteristics. As far as material characterization is concerned, we focused on: (i)
multi-physics modeling of EAP under combined electric and mechanical loading and (ii) the role
of geometric reinforcement and stiffeners on macroscopic response and force-stroke
characteristics of an EAP-based actuator.

Approach

e Derive a control-theoretic framework of controlling a distributed parameter system (DPS) or
partial differential equation (PDE) using the newly proposed PDE boundary control
framework of Dyadic Perturbation Observer (DPO) developed by the PI and his research
team.

e Apply DPO and compare with the existing PDE control approaches

e Develop a simple, effective experimental validation of the otherwise highly control theoretic
approach.

e Devise a numerical framework that enables the optimization and characterization of different
actuator configurations

e Verify the material model prediction through different combination of loading.

Examine the role of geometric constraints on the macroscopic response of the proposed
actuators, to control the force-stroke characteristics

e Devise a simplified analytical framework to describe the actuator response that can be used
with the control algorithms.

Relevance to Army

Compliant robotic actuators provide the ability to interact with dynamically varying external
conditions. The realization of the proposed actuation and sensory framework will assist in
exploration of forbidden terrains, monitoring of critical assets, as well as mitigation of
environmental hazards. The Army’s future combat robots equipped with flexible continuum
actuators can respond to combat needs in hostile environments, especially when integrated with
intelligence, surveillance, reconnaissance (ISR) sensors. Moreover, the proposed work can be
further extended to computer-controlled minimally-invasive surgical tools for the Army’s field
hospitals. Additionally actively-controlled planar actuators are identified as enabling
technologies for the broader problem of developing a flexible-winged micro aerial vehicle
(MAYV) capable of agile flight in constrained environments. At the commercial and civilian
application level, we envision a range of system-level applications, including (a) a generalized



3D morphing structure for robotic grippers, (b) flexible robot manipulators without articulated
joints for greater maneuverability in highly constrained spaces for endoscopic surgical
procedures, (c) artificial muscles for biomimetic locomotion, swimming, and flying, and (d)
next-generation robotic manipulators and tethers for autonomous docking in space and tethered
spacecraft operations.

2. Summary of the most important results

Detailed, bulleted accomplishments for the period should be traceable back to approach and
objectives please be specific and quantitative where possible.

e We have obtained important results on how to synthesize, analyze, and design control of
complex flexible structures by PDE boundary control formulations (IEEE Transactions on
Robotics full-length paper published in 2013). This result is particularly useful when the PDE
model (combined hyperbolic PDEs of torsion and fourth-order bending PDES) is cross-
coupled with the rigid body motion of a platform represented by a highly uncertain nonlinear
ODE model.

e We also derived and further developed the newly proposed PDE control framework of
Dyadic Perturbation Observer (DPO) and submitted a manuscript to the IEEE Transactions
on Automatic Control.

e At the same time, we are making good progress in applying a Central Pattern Generator-
based control approach to control and motion planning of a flexible robotic actuator that
might not engage in oscillatory motions. Hence, this work is different from PI’s prior work
that has successfully applied CPG-based control approaches to oscillatory motions like

flapping.

e We developed mathematical framework for the electro-mechanical behavior of EAP,
combining the Maxwell-stress arising from applied electric field with the non-linear hyper-
elastic material response

e We implemented the mathematical framework into a user-material subroutine for ABAQUS
commercial finite element software.

e We performed multi-axial tensile testing with different biaxial loading ratio to calibrate the
material model

e We performed controlled actuation of pre-stretched actuators to calibrate the electro-
mechanical coupling and the FEM model prediction.

e We designed and optimized different actuator configuration capable of multiple-force stroke
characteristics

e We utilized segmented electrodes to build free standing planar actuators capable of 3D
deformation with prescribed force-stroke characteristics.

e We developed performance map for different geometric stiffeners layout to control the force-
stroke characteristics at constant overall actuator stiffness and applied electric field.

e Atenfold increase in the force-stroke characteristics is achieved from changing the stiffeners
pitch and periodicity.



e We developed and verified simplified analytical models based on Timoshenko biomaterial-
thermostat theory. An experimentally calibrated geometric factor is used to correct for local
inhomogeneous deformation.

Collaborations and Technology Transfer
e Invited talk at the Army Research Lab (Host: Dr. Sam Stanton & Harris Edge) on
11/1/2012.
e Discussion with the ARL researchers on the Army MAST program.
e Data sharing with Pratt & Whitney for possible implementation of long slender internal
or external gripper
e Data sharing with Boeing St. Lewis for possible utilization of soft actuators

3. Bibliography

Resulting Journal Publications (attached in this report)

= A A Paranjape, J. Guan, S.-J. Chung, and M. Krstic, “PDE Boundary Control for Flexible
Articulated Wings on a Robotic Aircraft,” IEEE Transactions on Robotics, vol. 29, no. 3,
June 2013, pp. 625-640.

= A. A Paranjape and S.-J. Chung, “Dyadic Perturbation Observer Framework for Control of a
Class of Nonlinear ODE/PDE Systems,” IEEE Transactions on Automatic Control, under
review (submitted 8/2013), 2013.

= Lai, W.; Bastawros, A.; Hong, W., Chung, S. 2013, Planar dielectric elastomer actuator
capable of out-of-plane deformation without prestretch, (In preparation)

= Lai, W.; Bastawros, A.; Hong, W., Chung, S. 2013, Control of force-stroke characteristics of
planar dielectric elastomer actuator (In preparation)

Resulting Conference Publications

e Paranjape, J. Guan, S.-J. Chung, M. Krstic, “PDE Boundary Control for Euler-Bernoulli
Beam Using a Two Stage Perturbation Observer,” IEEE Conference on Decision and Control
(CDC), Maui, HI, December 2012, pp. 4442-4448.

e A Paranjape, S.-J. Chung, and M. Krstic, “PDE Boundary Control for Flexible Articulated
Aircraft Wings,” AIAA Guidance, Navigation, and Control Conference, Portland OR, August
2011, AIAA 2011-6486.

e Lai, W.; Bastawros, A.; Hong, W., “Out-of-Plane Motion of a Planar Dielectric Elastomer
Actuator with Distributed Stiffeners,” Conference on Electroactive Polymer Actuators and
Devices (EAPAD), San Diego, CA, MAR 12-15, 2012; Proceedings of SPIE, Vol. 8340,
Avrticle Number: 834011.

e W. Lai, A. Bastawros, W. Hong, and S.-J. Chung, “Fabrication and Analysis of Planar
Dielectric Elastomer Actuators Capable of Complex 3-D Deformation,” IEEE International
Conference on Robotics and Automation (ICRA), St Paul, MN May 14-18, 2012.



Graduate Students and Thesis Titles

Jinyu Guan (M.S., graduated in May 2012), Aerospace Engineering, UIUC

M.S. Thesis: Design and Control Strategy of a Flexible, Hyper-Redundant Robotic Arm
using Electroactive Dielectric Polymers

Nitish Sanghi (M.S., graduated in May 2013), Mechanical Engineering, UIUC

M.S. Thesis: Design of Flexible Actuators using Electro-Active Polymers And CPG-
based Control Strategies

Michael Dorothy (Ph.D., Expected December 2014) Aerospace Engineering, UIUC
Ph.D. thesis in progress: Nonlinear Stability of Coupled Oscillators

Dr. Aditya Paranjape (PhD., graduated in 12/2011 and currently postdoc at UIUC)
Ph.D. Thesis: Dynamics and Control of Robotic Aircraft With Articulated Wings

Dr. Aditya Paranjape, who was partially supported by this ARO grant will become a
tenure-track assistant professor of Mechanical Engineering at McGill University,
Montreal, Canada, starting in 2014.

William Lai (M.S., graduated in May 2011), Aerospace Engineering (Major: Engineering
Mechanics), lowa State University.

M.S. Thesis: Characteristics of dielectric elastomers and fabrication of dielectric
elastomer actuators for artificial muscle applications.

William Lai (PhD, Expected June 2014), Analysis and Fabrications of Planar Dielectric
Elastomer Actuators Capable of Complex 3D Deformation, Aerospace Engineering, lowa
State University

4. Appendixes



IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 3, JUNE 2013

625

PDE Boundary Control for Flexible Articulated
Wings on a Robotic Aircraft

Aditya A. Paranjape, Member, IEEE, Jinyu Guan, Soon-Jo Chung, Senior Member, IEEE,
and Miroslav Krstic, Fellow, IEEE

Abstract—This paper presents a boundary control formulation
for distributed parameter systems described by partial differential
equations (PDEs) and whose output is given by a spatial integral
of weighted functions of the state. This formulation is directly ap-
plicable to the control of small robotic aircraft with articulated
flexible wings, where the output of interest is the net aerodynamic
force or moment. The deformation of flexible wings can be con-
trolled by actuators that are located at the root or the tip of the
wing. The problem of designing a tracking controller for wing twist
is addressed using a combination of PDE backstepping for feed-
back stabilization and feed-forward trajectory planning. We also
design an adaptive tracking controller for wing tip actuators. For
wing bending, we present a novel control scheme that is based
on a two-stage perturbation observer. A trajectory planning-based
feed-forward tracker is designed using only one component of the
observer whose dynamics are homogeneous and amenable to tra-
jectory planning. The two components, put together, estimate the
external forces and unmodeled system dynamics. The effectiveness
of the proposed controllers for twist and bending is demonstrated
by simulations. This paper also reports experimental validation of
the perturbation-observer-based controller for beam bending.

Index Terms—Distributed parameter systems, nonlinear control
systems, robot control, robot motion, unmanned aerial vehicles.

1. INTRODUCTION

HERE is a considerable interest in developing robotic air-
T craft, which is inspired by birds and bats [10], [16], [20],
[43] and insects [13]-[15], [60]. While insect wings can be mod-
eled as simple rigid wings, both wing flexibility and wing artic-
ulation are believed to play a key role in flight performance and
agility for bird and bat flight [43], [54]. A new concept to con-
trol microaerial vehicles (MAVs), which uses wing articulation
and is inspired by bird and bat flight, was introduced by Paran-
jape and coauthors [39], [40]. The concept lends itself readily
to aeroelastic tailoring, which is seen as an asset in the develop-
ment of agile MAVs [26], [39], [50], [55]. Wing flexibility not

Manuscript received May 20, 2012; revised September 30, 2012; accepted
January 12, 2013. Date of publication February 11, 2013; date of current ver-
sion June 3, 2013. This paper was recommended for publication by Associate
Editor M. Vendittelli and Editor B. J. Nelson upon evaluation of the reviewers’
comments. This work was supported in part by the Air Force Office of Scientific
Research under the Young Investigator Award Program (FA95500910089) and
in part by the U.S. Army Research Office under Award W911NF-10-1-0296.
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M. Kirstic is with the Center for Control Systems and Dynamics, University
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Color versions of one or more of the figures in this paper are available online
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Digital Object Identifier 10.1109/TRO.2013.2240711

Fig. 1. Robotic bat testbed, where the control laws proposed in this paper can
be tested [10], [16].

only improves aircraft performance and stability passively, but
can also be actuated actively for control [1], [39], [55]. Fig. 1
shows a robotic bat testbed, which was developed at the Uni-
versity of Illinois at Urbana-Champaign (UIUC) by the authors
of [10] and [16]. Each wing is actuated at the root, and during
experiments, the motion of each wing as well as the body can be
measured in real time for feedback control. It provides a suitable
platform to test the controllers that are developed in this paper.

Broadly speaking, continuum distributed parameter systems
(DPS) such as flexible wings can be controlled in two ways:
distributed control and boundary control. The former approach
relies on a series or a network of actuators and sensors that are
distributed over the system. The latter approach relies on actua-
tors that are deployed only on the boundary of the system under
consideration. For practical engineering applications, the most
important benefit of boundary control is the reduction in the
number of actuators. Despite a number of bio-inspired exam-
ples of distributed actuation, it is evident in robotic applications
that implementing a distributed actuation scheme would incur
substantial penalties in weight as well as costs. A distributed ar-
ray of sensors is considerably cheaper and less cumbersome to
implement than an array of distributed actuators. The benefits of
distributed actuation can be made up, in part, by a combination
of good mechanical design and effective boundary control.

A. Literature Review

Structural stability of the wing is governed by its geome-
try and speed. Moreover, a typical flexible wing has at least
two elastic degrees of freedom for deformation—bending and
twisting—in addition to the rigid rotations at the root. The struc-
tural dynamics of the wing are coupled to the rigid body dynam-
ics of the aircraft [39]. It has been demonstrated in the literature
that aeroelastic instabilities such as wing divergence and flutter

1552-3098/$31.00 © 2013 IEEE
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can be mitigated using flap-based effectors [3], [46] or passive
energy sinks for flutter [25].

There is a substantial amount of literature on boundary control
theory of partial differential equations (PDEs) (see [8], [9], [12],
[30]-[32], [47] for material pertinent to this paper and references
cited therein). There are two sets of methods for boundary con-
trol of PDEs. The first set consists of methods that convert the
PDE:s into ordinary differential equations using approximation
methods such as those of Galerkin or Rayleigh-Ritz [9], [22],
or using operator theoretic tools [4], [5], [11], [27], [33], [34].
The second set of methods leaves the PDEs intact, and uses a
“model-following” approach as described in a recent book by
Krstic and Smyshlyaev [30].

A finite-state approximation to a PDE may wrongly render
fundamental system theoretic properties like controllability and
observability into functions of the approximation [8]. Stabil-
ity analysis that is based on a finite-state approximation is
vulnerable to spillover instabilities which arise due to inade-
quate accounting of the residual modes [2], [37]. On the other
hand, keeping PDEs intact makes the control law design more
intuitive. A PDE-based approach has been used for maneu-
vering robotic arms [30], [44], controlling the Navier—Stokes
model [58], and suppressing vibrations in a flexible beam [21].
A gain-scheduling-based approach for nonlinear PDEs has been
presented in [52], while Krstic and Smyshlyaev [31] derived an
adaptive controller for parabolic PDEs.

There are several PDE and ODE controller designs in the
literature to stabilize and control beam bending [17], [21], [28],
[33], [34], [52], [56], although the literature mostly concerns
bending that is encountered in loaded cables, structural beams,
or robotic arms. Flexible wings of robotic aircraft are unique
because they experience a closed-loop interaction with the flow
field around them. The loop closure happens due to the flow field
itself being dependent on the wing deformation, which creates
a highly nonlinear system whose modeling is susceptible to
significant structural and parametric uncertainties. This neces-
sitates a control design approach, where the control parameters
can be tuned with very limited information about the system,
and traditionally successful and applied methods for DPS, such
as [5], [33], [34], need to be replaced by a more “adaptive”
approach, which can tune the control parameters to appropriate
functions of the system parameters.

B. Main Contributions

This paper presents a boundary control problem for wing twist
(second-order hyperbolic PDE) as well as bending (fourth-order
Euler—Bernoulli beam PDE), which could be applied to a wider
class of PDEs, including flexible aircraft wings and robotic
arms. One highlight of our approach is that it requires minimal
information about the system dynamics, and the control laws are
themselves in quite a tractable form, which makes them easy to
apply to a real physical system. The stability of the controlled
system is analyzed rigorously.

The main contributions of this paper are as follows.

1) The PDE control objective that is considered in this paper

is unique since the controller minimizes a tracking error of

IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 3, JUNE 2013

a time-varying net aerodynamic force or moment, rather
than following a deformed wing shape. An abstraction
of this control objective is to ensure that some weighted
integral of the twisting angle equals the prescribed value.
A similar idea for a more general class of PDEs has
been explored in [8] and [9] in the context of spatially
distributed control.

2) We design a tracking controller for wing twist based on
trajectory-planning and a PDE backstepping-based sta-
bilizer. The procedure is called backstepping because it
involves a Volterra operator with a lower triangular struc-
ture similar to backstepping transformation for ordinary
differential equations [29], [30], and allows the controller
acting at the boundary to compensate for the undesired
(unmatched) dynamics.

3) With the integral of wing twist as the output, and shear
force at the wing tip as the input, we show that the twist
dynamics have a finite relative degree, thereby permitting
a traditional ODE-based approach to control design. The
tracking controller increases the stability margin of the
twist dynamics by a factor of 16. An adaptive controller
for a limited class of parametric uncertainties is also de-
rived for tip-based actuators in general, and root-based
actuators, when the output is the rolling moment.

4) We present a novel perturbation-observer-based controller
to facilitate a trajectory-planning-based tracking con-
troller for bending. The output of interest is the displace-
ment of the wing tip. The perturbation observer, which
is designed here uses adaptation to estimate the external
forces acting on the system. The observer is split into a
“particular” component and a “homogeneous” component
(the notions are made more precise later). Since the ho-
mogeneous component is stable and not driven directly
by external feedback, it is simpler to design a control law
for it. The same control signal is sent to the actual sys-
tem, whose states then converge exponentially to a region
around the observer states.

5) We experimentally validate the perturbation-observer-
based controller for a beam, which is controlled at the
wing boundary.

This paper is organized as follows. The problem formulation
is explained in Section II. A backstepping-based tracking con-
troller for wing twist, which is inspired by [30], is derived in
Section III. A controller for wing twist with actuation at the
wing tip and its adaptive version are presented in Section I'V.
A controller to track tip displacement commands is derived for
the bending dynamics in Section V, where an observer-based
approach is introduced. Numerical simulations are presented in
Section VI. Finally, experimental validation of the perturbation-
observer-based control of beam bending is presented in
Section VI

II. MOTIVATION AND PROBLEM FORMULATION

The motivation to consider the problem of boundary control
of beams stems from the problem of controlling flexible wings
for agile aircraft maneuvers. Suppose that the wing has length
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Fig. 2. Figure showing the problems addressed in this paper.

L, a mass per unit span of m, and let y denote the spanwise

coordinate. Furthermore, let £ 2 &(t,y) and 0 2 0(t,y) denote
the bending and twist displacements, respectively, as shown in
Fig.2. Let EI, and G J denote the bending and torsion stiffness,
respectively, where I}, is the second moment of area of the cross
section about the local bending axis, and J is the torsional
constant. Let [, denote the polar moment of inertia of the wing
cross section.

The resultant wind velocity at a given point on the wing
u is a sum of the aircraft flight speed up (measured in the
body axis) and the wing vibration rate u; = [0 0 £]T so that
u= Twpup +uy (y), where Ty is the rotation matrix from
the body frame to the local wing frame. Let ¢ denote the wing
chord length. Let x.c denote the distance between the center
of mass and the shear center of the wing, and x, c the distance
between the aerodynamic center and shear center. The wing
is loaded transversely with a load F;, which depends on the
wind velocity, inertial effects that arise from aircraft acceleration
and added mass effect, and gravity. An aerodynamic model to
calculate Fj,, which is based on an ODE approximation for the
time-varying flow dynamics on the wing, can be found in [18].

Then, the PDE model of the structural dynamics of the right
wing is given by

m —Mx.C &t
[—fhxec I } |:9tt:| -
. |: Fb(£y797u7u3) :|
—xqcF) (53/7 97 u, l.13)

where the subscripts ¢ and y denote partial derivatives, i.e.,
& = 53757, Etyyyy = m%—iﬂ, and so on. A similar equation can be
derived for the left wing as well. The boundary conditions for
tip-based actuation are given by

f(t, 0) = gy (t7 0) = Syg/ (t, L) =0

€y (t, 1) = L)

NELEyyyy + ELEyyyy
—nGJb;,, — GJb,,

(D

M, (1)
— 0,(t, L) = —2=—=
el () = =

while those for root-based actuation (also shown in Fig. 1) are
£(t,0) = fyy(ta Ly=0= Eyyy (t,L)=0
& (t,0) =0r(t), 6(t,0)=0g(t), 6,(t,L)=0.

0(t,0) = 0, )

3)
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Note that both root and tip control configurations have one Neu-
mann and one Dirichlet boundary condition. In (2) and (3), Fi;,
and M;;, are the applied tip shear force and twisting moment,
respectively. The root actuation variables, dp and 0, are the
rigid dihedral (up and down motion) and wing incidence an-
gles. The term 7 denotes the Kelvin—Voigt damping coefficient.
It need not be the same for bending and twisting in general.

The right-hand side (RHS) of (1) depends on up, which is
given by

m(as + S(ws)ug) + i / (i + S(wp)uy)dy = Foer

Jwp + S(WB)J(UB +/ (Ip(y)d’f + S("‘)B)IP(y)wf) dy

“

where m is the total mass of the aircraft, J is the moment of
inertia tensor for the aircraft, fw denotes integration over the
wing, S(-) denotes the cross product, and F,,; and M, rep-
resent the net external (aerodynamic + gravitational) force and
moment on the aircraft. Furthermore, wp and wy = [0 6 0]T
are vector representations of the aircraft angular velocity and
the twist rate of the wing, with components in the aircraft body
axes. The dynamics of the motion of the center of gravity of
the aircraft, arising from the movement of the wings, have been
ignored. See [39] for a detailed and more general derivation of
the equations of motion. The important point, though, is that the
structural dynamics of the wing are coupled to the flight dynam-
ics of the complete aircraft, which are nonlinear in their own
right, which makes control design a challenging assignment.

Physically, Fi;, and M;;, can be realized by using wing tip
flaps, not unlike the outboard feathers on the wings of a bird.
Indeed, trailing-edge effectors have been demonstrated to be
effective at wing flutter suppression as well [3]. On the other
hand, d and 0 are easier to control, and the capability for root
actuation is present naturally in flapping wing aircraft.

Problem Formulation

The control objective is to ensure that

= Mnct

L
lim (/ 0(t,y)dy — H(t)) =0 (net lift) Q)
t—00 0

L
flim </ yo(t,y)dy — Hl(t)> = 0 (rolling moment)  (6)
[ — 00 0

L
i ([ 66y~ ROO)) = fim (€66,) ~ R(e) =0
t—00 0 t—00

(bending displacement of the tip) (7

where H(t), H;(t), and R(t) are sufficiently smooth time-
varying signals. Although we state asymptotic convergence
as the objective, we will prove exponential convergence to a
uniform ultimate bound. The net lift produced by the wing is
fOL 0.5p|[ul|*cCy, (y, o, 8)dy, where p is the air density, [|[ul| is
the local wind speed, and C'y, is the coefficient of lift, which de-
pends on the angle of attack of the aircraft «, and the local wing
twist angle 6. Depending on the aerodynamic theory, C'z, may be
anonlinear function of o and 6, and it is almost always a function
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of y for a finite-span wing [36]. The term fOL & (ty)dy =¢&(L)
is a measure of the effective wing dihedral, which is a key
yaw control parameter [39]. It is approximately the ratio of two
components of Fj. The first points are along the y direction in
Fig. 2, and the second points upward. Hence, it is a measure of
the amount of side (y-) force produced by the wing which, in
turn, produces a yawing moment on the aircraft.

Remark 1: The well-posedness of the closed-loop systems
considered here can be shown by proving that the input—output
map of the system exists and is bounded [7], [48]. For the
twisting dynamics actuated by root control, this is achieved by
designing the control to map the system onto well-posed and
exponentially stable dynamics. For twisting dynamics actuated
at the wing tip, the input—output map is actually a finite-order
ODE, and its well-posedness follows from the standard exis-
tence and uniqueness theorems for ODEs. The well-posedness
of the closed-loop bending dynamics can be shown using a
transfer function approach [7], [12].

Remark 2: Tt was shown in [12] that the boundary condition
EIL&,,, = Fip in (2) needs to be replaced with ET;,(&,,, +
Nétyyy) = Fiip when the Kelvin—Voigt damping coefficient
1 # 0 in order to ensure the well-posedness of the PDE. Note,
however, that this replacement essentially creates a low-pass
filter for the control input Fi;,. As long as the dominant fre-
quencies in Fy;, are smaller than the cutoff frequency 1/7), the
boundary condition in (2) is sufficiently accurate for control
design. Moreover, the Kelvin—Voigt damping term is physically
akin to distributed load [F}, in (1)] on the wing, which does not
affect the boundary conditions.

III. ROOT-BASED TRACKING CONTROLLER FOR LIFT

In this section, we consider a twist PDE with constant coeffi-
cients. The PDE backstepping method is used to design a con-
troller, which ensures hmt_m(fOL Ody — H(t)) = 0 [see (5)].
The twisting dynamics, with the angle of incidence at the wing
root as the control input and the wing tip free, are given by

O (t,y) — DBy (t,y) — aby, (t,y) = MO(t,y)

We first make a coordinate transformation and define
y
wlty) = [ ott,a)da. ©)
L

Physically, w(t, y) measures the lift, which is generated by the
outboard section of the wing starting at y and terminating at
the tip. Note that 6, (¢, L) = 0 at the free end y = L. Hence, it
follows that

y
wit (t,y) Z/ O (t, x)dxw
L

y

_ / (Biss () + 0B, (1, ) + MO(t, 7)) da

- bety (ta y) + Gﬂy (tv y) + Mw(tv y)

= bwiyy (t,y) + awy, (t,y) + Mw(t,y). (10
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Thus, the dynamics of w are described by the PDE

wy — bwyy, — awy, = Mw, w(t,L) =0, w,(t,0)=U(t)
an
where U(t) is the control signal [0 in (3)], and recall that
a=GJ /I, and b = na. Furthermore, we defined M so that
MO = —x,cFy,/I,, where F, is a linear function of 6. Note that
wy (t,y) = 0(t,y). The control objective is now recast to ensure
that lim; ., w(t,0) = —H(¢).
The method presented in this section rests on the following
steps:
1) obtain a backstepping transformation w +— v, which maps
the dynamics in (11) into desired stable dynamics;
2) compute the boundary condition v(t, 0); and
3) derive a trajectory planning-based design with the bound-
ary conditions of the v dynamics.
Step 1 (Volterra transform): Define the Volterra transform

)

v(t,y) = w(t,y) —/ k(y, x)w(t, z)dx (12)

L

and the v-dynamics

Vgt —buyyy — avy, = Mv —bpvy —apv, v(t,L) =0, p>0.
(13)

Note that we have prescribed only one boundary condition for v,
which follows from the fact that w(¢, L) = 0. The second bound-
ary condition v, (¢,0) has to be calculated to ensure that the
lim; o, w(t,0) =~ —H(t) (this is what we can guarantee in prac-
tice, in place of asymptotic convergence). The target dynamics in
(13) are very similar to those designed for the regulation problem
in [30, ch. 7, pp. 79-89]. However, the boundary conditions are
chosen to match the control objective in (5). For the regulation
problem (H = 0), we can prescribe v, (£,0) = v(¢, L) = 0[30].
In contrast, in order to track a nonzero, time-varying H (t), we
choose v, (¢, 0) by using trajectory planning.

We first establish the stability of (13) with homogeneous
boundary conditions, i.e., v, (t,0) = v(¢, L) = 0.

Proposition 1: The target dynamics (13) with v, (¢,0) =
v(t, L) = 0 are stable if and only if

M w2 2
p>maX <a_4L27_4L2> (14)

Proof: Using the method of separation of variables, it is easy
to check that the eigenvalues of the resulting system are the
solutions of

A2 b2+ p)A+ (a(V? +p) — M) =0
2n+1mw

h = —
where v 5 I

n=0,1,2,.... (15)

The target dynamics are stable if and only if the control design
parameter p satisfies (14). |
Next, we solve for k(y, «) in the Volterra transform (12).
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Proposition 2: The gain kernel k(y, z) in (12) is the solution

of the Klein—-Gordon PDE
kzz(yvx) _kyy(yax) = _pk(yvx)a k(yaL) =0

k(y.y) =5 (L-y) (16)

and given in terms of the modified Bessel function, I; (-)"

Li(yp(L—y)? — (L — 36)2)).
VP((L = y)? = (L —x)?)

Proof: We can derive expressions for v;; and v,,, from (12)

k(y,z) = p(L — x) (17)

y
Vpt = Wy */ k(y, z)w (z)dw
L

= bwyy, + aw,, + Mw

Y
[ ) (b (@) + aw. (@) + Mu(o) do
L
y
= bwyyy + awy, + Mw — / E(y, x)Mw(z)dx
L

- /LU kyo (y, ) (bw, () + aw(z)) dzx

— k(y, y) (bwyy (y) + aw, (y)) + k. (y, y) (bw, (y) + aw(y))
+ k(y, L) (bwy, (L) + aw, (L)). (18)

The expression for v,, can be derived as follows:

vy () = wy (9) — Ky, y)w(y) — / "k (. 2wt 2)de

Vyy (Y) = wyy (y) — 2k, (y, y)w(y)

ko () w(y) (g, y)wy (5) / iy (y )w(t, z)d.

19)

The expression for v, is similar to that for v,,. We substitute
(18) and (19) into (13) and isolate the coefficients of w and
w, in the integrand as well as outside the integral. This yields
(16). ]
Step 2 (Boundary condition, v(t,0), for tracking): We have
already ascertained that v(¢, L) = 0. From (12), it follows that
L
v(t,0) = w(t,0) Jr/ k0, x)w(t, z)dx (20)
0

which does not yield an exact relationship between H(t) de-
fined in (5) and v(t,0). Instead, we need to determine an ap-
propriate reference value for v(t,0), denoted by H, (), which
ensures that w(¢,0) approximately tracks —H (t). For exam-
ple, we could approximate w(t,x) ~ fi(x)w(t,0), f1(0) =1,
where f1 (x) denotes the shape of the first twisting mode. Thus,
weset H, (t) = —H(t)(1 + fOL k(0, x) f1 (x)dx). Itis important
to appreciate that ignoring the higher modes has no repurcus-
sions for stability since it is guaranteed separately. At the same
time, it may be necessary to include more than one mode if there

'A modified Bessel function I, (y) satisfies y> I/ (y) + yI! (y) — (y* +
2 _
n*)I,(y) = 0.

are tight bounds on the tracking error. A similar approach, which
is based on backstepping, but for constant reference signals, has
been derived in [49].

Step 3 (Trajectory planning for wing twist): We design a tra-
jectory planning-based algorithm (see [30], Ch. 12). We define
a new state v", where the superscript “7”” denotes the reference
value. The dynamics of v" are given by a PDE that is identical
to (13):

v (¢, L) =0
21
where v, (t,0) is the control input to be designed using trajectory
planning to ensure that v" (¢, 0) tracks H, (t).
Since v" (¢, L) = 0, we expand v (¢, y) as a polynomial

N j
vty =Y n <t>(L;!y).

T T T _ ‘s r ‘s
vy — boy, —avy, = Mv" —bpv; —apv”,

(22)

Substituting for v" into (21), we get
i () + bpij (t) + (ap — M)n; (¢) = bnj2(t) + anj2(t).

(23)
The requirement that v" (¢,0) = H, (t) gives
Z ni ()= = H(t). (24)
=

The value of N can be chosen on a case-by-case basis. As an
illustration, if we truncate the series at N = 3, we get

i (t) + bpin () + (ap — M)mi (t) = bz (t) + ans (t).

A similar equation can be obtained for 1), (¢), with the RHS equal

to zero. Therefore, 172 converges to zero exponentially fast and

can be ignored. The requirement that v" (¢,0) = H, (t) gives
L3

m )L +mn; (t)F = H,(t).

Substituting 73 (t) = 2 (H, (t) — 1 (t)L) into (25) gives

(25)

(26)

i)+ (o4 73 ) m@+ (=24 5 ) meo

6 .
=75 (bE(6) + aH, (1)) 27)
Then, vy, (£, 0) is calculated by differentiating both sides of (22)
L? 3H, (t
0 (6,0) =m0 () 5 =2m() - D og)

where vy (t,y) = 0v" (t,y)/dy.

Proposition 3: Based on Steps 1-3, we now define U(t) =
6(t,0) = wy,(t,0) as illustrated in the block diagram in Fig. 3.
First, we set the boundary condition v, (t,0) = vy (¢,0). Let
0(t,y) = v(t,y) — v" (¢, y). It is straightforward to check that
the dynamics of ¥ are given by the exponentially stable PDE

’Dtt - bﬁfyy - af)yy =Muv— bp’[)f - apf/
o(t, L) = v,(¢,0) = 0. (29)

Thus, in particular, it follows that v(¢,0) — v" (¢,0) exponen-
tially fast and v(¢, 0) tracks H, (t).
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Y

— w(1,0)
w dynamics

vy’(t,O)

w(t,y)

v dynamics e——— ()

v7(t,0) <a—ro

Fig. 3. Block diagram showing the tracking controller for twist (6) dynamics.
This structure is identical to the classic strict feedback structure for systems
described by ODEs [29].

An expression for v, (¢, y) can be found by by differentiating
both sides of the Volterra tranform in (12)

y
0 t) = 0, (t.9) = Kp)utt) = [ by o)ult)de

(30)
Finally, the control input U (¢) is calculated

U(t) = 0(t,0) = w, (t,0)

L
— 0! (£,0) + k(0, 0)u(t, 0) —/0 ey (0, 2)w(t, 2)dz (31)

feedback

where vy (t,0) — v, (t,0) exponentially fast. The term vy (¢, 0)
is a feed-forward tracking term in the control signal, while the
remaining two terms act as feedback stabilizers.

We now assert that the closed-loop system is stable in the
sense of Ly. Given a quantity Q(¢,y) € R, define

12)]le, = Aﬂwww

Theorem 1: The closed-loop w-dynamics (11) and (31) are
stable in the sense of Lo, i.e., ||w(t)||z, is bounded.

Proof: Using a Lyapunov stability argument, it can be shown
that ||v(t)||z, is bounded at all times. Since (12) is a dif-
feomorphism, we can find another function I(y,z) (which is
expressed in terms of the Bessel function JJ; [30]) such that
w(t,y) =v(t,y) — [} Uy, z)v(t, z)dz, and [(y, ) is bounded
forall0 <y < a < L.Since the ||v(t)]|z, is bounded, it follows
that ||w(t)]|z, is bounded. [ |

Remark 3: The approach that is detailed in this section also
works when the RHS is nonlinear, i.e., M = M (y). Lineariza-
tion can be used in the general case, where the RHS is of the
form M (y, 61,0:). It has been shown in [38] that a regulator
based on (31) can stabilize the twisting dynamics in the presence
of these nonlinearities. The analysis is not repeated here.

Remark 4: A few observations are worth noting here.

1) Forstability, itis essential thatb > 0, i.e., the Kelvin—Voigt
damping coefficient is always positive. The aerodynamics
could introduce negative damping, but it can be compen-
sated by the term bpv;, and wing flutter can be prevented.
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The need to compensate for negative damping imposes an
additional constraint on p.

2) Damping and stiffness cannot be added independently.
They are added in the ratio b/a.

3) The controller in (31) requires that the twist angle at all
points on the wing be known. This difficulty can be cir-
cumvented by designing a PDE-based observer [30] or,
practically, using a series of distributed sensors and fitting
their output with an a priori designed spline.

4) Finally, the control law does not require that a, b, or M
be known for the purpose of regulation. We only need to
know bounds on a and M to choose the gain p.

IV. BOUNDARY CONTROL OF TWISTING MOTION:
WING Tip CONTROL

Although backstepping can be employed when the twisting
moment at the wing tip is used as the control input, it turns out
that there is a simpler alternative, as described in this section. It
relies on the fact that the system has a finite relative degree for the
input—output combination of the tip moment and jOL 0(t,y)dy,
respectively.

A. Tip Boundary Control When All Parameters Are Known

As in the previous section, one can design a backstepping
controller for the case where a control moment is applied to
the free end (y = L) of the wing, while the other end (y = 0)
is clamped. In fact, the procedure in both cases is identical, al-
though the final expressions for the control law differ slightly.
Alternately, in the case of MAVs, one may do without a sta-
bilizing controller. The “tracking half” of the controller may
be designed by using the output measurements. This method is
useful for adaptive designs as well. We consider the wing model

O — b0ty — aby,, = M6, 0(t,0)=0, 0,(t,L)=mu(t)
(32)
where the control input is a moment that is applied at the wing
tip, (u(t) = 0,(L,t) = My, in (2), and b= na = nGJ/I,.
Furthermore, we defined M so that M0 = —x,cF;,/1,, where
Fy, is a linear function of 6.
Theorem 2: A dynamic controller of the form

bi(t) + au(t) = H(t) — MH(t) — (M + k)e(t) — koé(t)

+ aby(t,0) + b6, (t,0) (33)
ensures the following control objective:
L
tlim ( 0(t,y)dy — H(t)) =0. (34)
¢ \Jo

Proof: Let e(t) = fOL 0(t,y)dy — H(t) denote the error,
which needs to be regulated. Then,
L ..
€= ; O (t, y)dy — H(t)

L
/ (abyy + Oy, + M0O)dy — H(t)
0
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+ Me(t) — H(t) + MH(t)
= bi(t) + au(t) — af, (t,0) — b, (t,0)

+ Me(t) — H(t) + MH(2). (35)

The controller (33) renders the system into a globally expo-
nentially stable linear system with k. > 0,k > 0

8(t) + keé(t) + ke(t) = 0. (36)

Hence proved. |

Remark 5: The control law in (33) suggests that § need not be
monitored or measured at all locations on the wing. Instead, only
6, (t,0) needs to be measured or estimated. The reference signal
H (t) is known. It may be difficult to inject damping because é(t)
is the rate of change of the lift and, in practice, would require
differentiating noisy acceleration signals. Another interesting
observation is that although the PDE system had an infinite
relative degree when the root twist was chosen as the control
input, the relative degree is 2 when twisting moment at the wing
tip is considered as the input. Finally, the control law design that
is described is this section lends itself readily to adaptation if a
and/or M are unknown.

B. Tracking and Stability

The problems of tracking and stabilization are distinct be-
cause the PDE system (32) is infinite dimensional. Nevertheless,
a tracking controller improves stability as described presently.
One way to measure the influence of a tracking controller on the
stability of the closed-loop system is to set H = 0. Make a co-
ordinate transformation w(t,y) = [} (¢, z)dz, similar to (9),
so that achieving H = 0 is equivalent to achieving w(t, 0) = 0.
It follows that the transformed dynamics, with H = 0 obtained
by the tracking control algorithm, are given by

Wy (ta y) - bwtyy (ta y) — QWyy (ta y)
= Mw(t,y) — bweyy (t,0) — awyy, (t,0)
w(t,L) =w(t,0) =0, w'(t0)=0. (37)
The third boundary condition is not entirely independent. Let
w(t,y) = n(t)é(y). Then, we get
ij(t) — Mn(t) _ Dyy (y) — dyy (0)
b(t) + an(t) ¢(y)
where A is a constant. It follows that the condition for stability
(exponential stability to be precise, since the present system is

linear) is M /a < A2. The differential equation for ¢(y) in (38)
can be solved to get

d(y) = Asin(rhy) + Bcos(ry) + ¢y, (0)/2%.  (39)

The boundary conditions ¢(0) = ¢,(0) =0 lead to ¢(y) =
B(cos(ry) — 1). Finally,

$(L)=0 = 1 =2nn/L,

= A2

(38)

co(L)=0, n=1,2,....
(40)
Had we not imposed the condition H(0) = 0, we would have
obtained M/a < m?/(4L?*) as the condition for (exponential)

stability. Since the condition for closed-loop stability is given

by M/a < A* = 4xn? /L?, it follows that the stability margin
improves by a factor of 16 by using only the tracking controller,
although it does not stabilize the wing for all values of M and
a as backstepping does. In principle, the tracking controller
converts the wing from a cantilever beam to a clamped-clamped
beam. In practice, this translates to the ability to increase the
wing flexibility by an order of magnitude, or increase the wing
divergence speed fourfold.

C. Adaptive Control for a Wing Tip Actuator

Consider the dynamics in (32) with the objective in (34), and
suppose that M is unknown. The control law in (33) is modified
so that

bi(t) + au(t) = H(t) — M(t)(H(t) + e(t)) — ke(t)

— keé(t) +ab, (t,0) + b6, (t,0)  (41)
where M (t) is the estimated value of M, and e(t) =
fOL 0(t,y)dy — H(t) denotes the tracking error. The closed-loop
tracking error error dynamics are described by the ODE
E(t) + koé(t) + ke(t) = =M (t)(H(t) + e(t)) (42)
where M (t) = M (t) — M(t). We design a projection-based
adaptive law for M (t) to ensure that the error e(t) remains
bounded with as small a bound as possible. The projection op-
erator, which is denoted by Proj(+, -), is used commonly in the
adaptive control literature [6], [35] for parameter estimation.
Theorem 3: Let x(t) = [e(t), é(t)]". Suppose that there exist
positive constants By and By such that [M| < By and |[M| <
B,. Then, the following adaptive law

M (t) = AProj (M(t), 2TP m (e(t) + H)) 43)

with |M (t)| < By ensures that there exists a positive constant
K (B, By) and atime T > 0 such that

K (B, By)

Vt>T.
val

[z(®)lle < lz@)]2 < (44)

Proof: see [38].

Remark 6: The bound on ||z(t)||« can be made arbitrarily
small by choosing a large ~. The steady-state beam shape of
the wing depends on the steady-state value of the error M (t).
Finally, it is worth noting that although a and b were assumed
to be known, the aforementioned analysis can be repeated to
accommodate an unknown a and b as well.

D. Control of Rolling Moment

An abstract measure of the rolling moment is fOL yo(t,y)dy,
which is defined in (6). Let e;(t,y) = [ y0(t, y)dy — H (),
where H;(t) denotes the reference value of the rolling moment
to be tracked, and e; (t) is the tracking error. Differentiate e; (¢)
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twice with respect to time
L .
at) = [ vbut.o)dy - (o)
0
L
= [ o 081,,0) + ), ()
0

L
+ M/O yo(t,y)dy—H,(t)
= L(bBs, (t, L) + ab, (t, L)) — b(6:(t, L) — 6;(t,0))
—a(f(t,L) — 6(t,0)) + Me;(t) + M H;(t) — Hy(t).
45)

An interesting observation is that ¢;(¢) has a relative degree of
2 with respect to 6, (t, L) (tip control) as well as 6(0) (root
control). Therefore, a considerably simpler controller than the
backstepping controller, on the lines of the adaptive controller
in the previous section, can be implemented for a root-based
actuator as well. Indeed, in aicraft, the lift is controlled using
the horizontal tail, while wing-based flaps (ailerons and spoilers)
are used primarily for roll control.

V. RoOT BOUNDARY CONTROL OF WING BENDING

In this section, we first determine the conditions under which
there is a significant time-scale separation between the bending
and twisting dynamics. When the time-scale separation is suf-
ficient, the control laws for bending and twist can be designed
separately, which simplifies the design process considerably in
practice. Time-scale separation is used quite routinely to design
flight control laws [24], [45], [53], [59]. We introduce one of the
main results of this paper—the new perturbation-observer-based
method to design a bending controller. In particular, we design
a root-based bending controller [§x in (3)] using a combina-
tion of the perturbation-observer-based approach and trajectory
planning. The design of a tip controller [ F};;, in (2)] is straight-
forward using the approach that is established in this section,
and we demonstrate it experimentally.

The bending PDE in (1) can be written as

mgtt + nEIbgtyyyy + Elbgyyyy = Fn (t7 Y, fta 97 ett)
f(t, 0) = 51/(/ (t, L) = gyyv (t, L) =0, ft/ (t, O) = u(t)

where the control input u(t) = dr (¢) in (3) is designed to ensure
that {(t, L) = R(t) in (7). The acceleration term corresponding
mx.ch in (1) has been moved to the RHS and merged into F;
so that F,, = F}, +mx, cf. The RHS (46) is independent of &,
and 6 is an average value that is obtained from the faster twist
dynamics. Therefore, unlike the twisting dynamics, the onset
of instability in the bending dynamics will correspond to the
damping becoming negative.

(46)

A. Time-Scale Separation in Microaerial Vehicles With
Flexible Wings

In [39], it was shown that the time-scale separation between
the twisting and bending dynamics is given by the following
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approximate relation, when the speed is less than the torsional
divergence speed

ng 1.5 L
w5N1—|—Vc

(47)

where wy and w¢ denote the angular frequencies of torsion and
bending, respectively, v denotes the Poisson ratio (typically in
the range 0.1-0.4), and the ratio L/c is called the aspect ratio of
the wing (of the half wing, to be precise). Therefore, the twisting
dynamics are faster than the bending dynamics, and moreover,
the time-scale separation increases with the aspect ratio, and
reduces with increasing flight speed [39]. In most practical sit-
uations, a time-scale separation of 3-5 is considered sufficient
to design and implement decoupled control laws, i.e., decou-
pled controllers for bending and twist can be safely designed
for wings with aspect ratio L/c > 3.

Remark 7: Wings with smaller aspect ratios would have to
be modeled as plates rather than beams. Although several MAV
wings do have aspect ratios smaller than 3 (such as the one built
by the authors [40]), their structure consists of a skin wrapped
around or on a more traditional beam-like structure. The control
design explained in this paper can still be employed for such
wings. The two-time-scale approach is rigorously applicable to
coupled infinite-dimensional systems, as illustrated for thermal-
fluid dynamics in [57], and for flexible structure dynamics in
[51]. Moreover, although the coupled dynamics overlap over an
infinitely wide frequency range, the slower subsystem has only a
tiny fraction of its energy in the (semi-infinite) frequency range,
where it overlaps with the faster dynamics (whose entire energy
is in that range).

B. Open-Loop Stability of Bending

Assume that the boundary conditions are homogeneous, i.e.,
E(t,0) =&,(t,0) =&y (t, L) = &y, (t,L) = 0 for all t. Let
ay, = EI,/m and b, = nay. Let F(t,y) = F,(t,y)/m, where
F, (t,y) succinctly denotes the RHS of (46). Assume that the
flight speed ||up|| is constant.

Proposition 4: Subject to the aforementioned assumptions,
the bending dynamics (46) with u = 0 are stable if

/OL (F(t,y))*dy < (25552:)2 /OL (& (t, ) dy.

Proof: Consider the Lyapunov function (in this case, the total
Lo energy of the beam)

1 L
vww:fé(ﬁ+%ﬁw@. 48)

V(t) 5

It is quite straightforward to derive the following expressions
for V (t):

. L L
Vm:fmlg@@+lsm@w@. 49)
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A repeated application of Poincaré’s inequality2 yields

bﬂ'

Using the Cauchy—Schwarz 1nequahty, we get

<o [ @dw\/( [ ew) ([ wwnra).

Clearly, if
L 4N\2 rL
bbﬂ'
F(t,y))*d — Jd
/O (F(t,y)) y<<16L4> /O & dy
AN 2 L
7)E11,7r4 / 9
= d 50
< 16mL4 ) 0 gf, Y ( )
then the bending dynamics are stable. |

The expression for F'(¢,y) in the simplest case is of the form
F(t,y) = —(k1& + rk267)CL(0), where k1, 19 > 0 are essen-
tially constant. If C';, > 0 (a reasonable assumption), it follows
that k1 C' & injects damping into the system and counters the po-
tentially destabilizing contribution from r»£26 for sufficiently
small values of & . However, if C7 () is not uniformly posi-
tive, and if it is out-of-phase with &, F(¢,y) could potentially
cause the damping to become negative, leading to oscillatory
instability in the bending dynamics and trigger wing flutter.

Furthermore, since x; o ||ug||, the flight speed, it follows
that (50) can be used to derive a stable envelope for the flight
speed and Young’s modulus. However, unlike the analysis for
wing twist in Section V-A and [39], the analysis is considerably
more complicated because of the potentially strong nonlinear
contribution from &7 at low flight speeds.

C. Perturbation Observer for Root Control of Bending

In this section, we design a high-gain observer-based con-
troller to facilitate a trajectory-planning-based tracking con-
troller for bending. The perturbation observer does not predict
the system states. It uses projection-based adaptation to esti-
mate F(¢,y) which would be unknown in practical situations,
although one may estimate its spatial profile from the wing
geometry [36]. The perturbation observer is split into a “partic-
ular” component and a “homogeneous” component (the notions
will be made more precise in this section). In particular, the
homogeneous component is stable and not driven directly by
external feedback. Thus, it is simpler to design a “tracking”
control law for it. The same control signal is sent to the actual
system, whose states then converge exponentially to a bounded
envelope around the observer states. Fig. 4 shows a block dia-
gram of the perturbation observer-based controller. It is the PDE
analog of feed-forward and feedback control for systems that
are described by ODEs. Notice that the reference input, R(t)
from (7), enters only the homogeneous component of the per-
turbation observer, while the feedback from the actual system
only enters the particular component.

NP . L 2 (L
2Poincaré’s inequality fo w?dz < Lw?(0) + 47:—; fo wdz.

&(ty) u(t)

& dynamics [«

A

E(Ly)

,L R

L ép dynamics é"(t ) 9 éhdynamics -
+
R()

Fig. 4. Block diagram for the perturbation observer coupled to the system
dynamics. The control signal u(t) is generated from trajectory planning, while
R(t) is the desired reference signal from (7).

Let F(t,y) = W(t)T ¢y (y) + o(t), where W (¢) and o (¢) are
unknown and bounded with known bounds. We assume that 17/
and ¢ are also bounded with known bounds. The set of functions
¢y (y) can be chosen to get a satisfactory bound on o, and using a
knowledge of the wing geometry [36] (e.g., the force distribution
on an elliptical wing is rectangular, and vice versa).

The perturbation observer for the bending dynamics in (46) is
designed as a combination of two components, which are called
the “particular” component and the “homogeneous” component,
for reasons that will become apparent presently. Let ép and fh
denote the states of the particular and homogeneous compo-
nents, respectively. The dynamics of é,, and éh, are described by
the following PDEs:

517 w(t,y) + bbfp tyyyy (6 Y) + abgp yyyy (6 Y)
= —byp&pi(t,y) — anpy (t,y) + W () ¢y (y) + 6(t)
épyyy@v L) = ép,yyy(tv L) = ép (t, 0) = ép,y(tvo) =0 (5D

for the particular component, where ép = fp — &, and

—bypn — aypén
= éhr (ta O) = 07 éh,y (ta 0) = U(t)
(52)

En,tt £ 0o tyyyy + a6hyyyy =

éhwu:u (t, L) = éh,yy:t/ (t, L)

for the homogeneous component. Note that the homogeneous
half is a stable system, and its dynamical equation does not
depend on & or &, (which is why it is called the “homogeneous”
component). Moreover, the reference signal R(t) is sent only to
the homogeneous component.

We now put together the two components. Define é = {fp +
éh. Then, the dynamics of f are given by

éz‘,t (t, y) + bbétg/yyy (ta y) + abéyyyy (ta y)
= W(t)" ¢ (y) + 6(t) — by (t,y) — avp(t, y)
éyy(tvL) = é:uyy(ta[’) = é(ﬁ,O) =0, éy (t,O) = U(t> (53)

where §~ :é — ¢, and p > 0 is chosen to ensure desirable
convergence properties. Recall that a;, = EI,/m and b, =
nET,/m. Choose projection-based adaptive laws for W (¢) and
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5(1)
. L
va:%meww—A<é+%m@mQ

aw:%ﬂm(ﬂm—/7&+%wg (54)

0

where v, > 0 is the adaptation rate, and the bounds on W and
¢ are chosen to be equal to the known bounds on W and o,
respectively.

We are now ready to state our main result, which asserts that
é , which is the sum of the states of the two observer components,
tracks &, i.e., the system state.

Theorem 4: The error between the system (46) and the per-
turbation observer (53), in the sense of ||£(¢, )|z, is globally
uniformly bounded, and the bound can be made arbitrarily small
by increasing v, .

Proof: To streamline the proof, we introduce some useful
notation. We define numbers $1, s9, 01, 02, which depend on the
gain p, as follows:

s1 = min{(byp — 9), dayp, day }

1
52 = gmax {1+ 6, (a +0b,), (@ +8by)p +6)}

WIW + 0% < %, \WEW| + |oo| < % (55)
where d > 0 is an arbitrarily small constant, which is introduced
in the proof. Equation (55) reflects the fact that W (¢), o (t), their
time derivatives, and predicted values are bounded with known
bounds.

Consider the Lyapunov function

1

L ~ ~ ~
V(t) = 5/0 (ftZ + (ap + 0by,)E,, + (ap + 6bb)p§2) dy

1 /g~ L.
+— (W +5?) +5/ £ dy (56)
Ya 0

where W = W — W, and ¢ = ¢ — o. The constant ¢ is chosen
to be small enough so that the Lyapunov function is positive
definite. Differentiating both sides with respect to time and per-

forming integration by parts a few times, we get
. L ~ L ~
VO < (=) [ &y~ [ Edy
0 0

L 5 L N
_ Sy /0 & dy b, /0 & dy

1 ~ .
i (W(t)TW(t) + &(t)d(t)) . (57)
Ya
Define a constant V) = 5—2 + % From (57), we get
. 1) 1)
V() S -2V + -+ 22 = =2 (V) = ). (58)
2 Ya 527%a 52

It follows that V' (¢) converges to V[, exponentially fast. Thus,
the error dynamics between the perturbation observer and the
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actual system are globally uniformly bounded, and the bound
reduces uniformly with increasing ~,, . |

The two halves of the observer, put together, thus function
as a standard perturbation observer whose job is to estimate the
unknown nonlinearities and disturbances using full state feed-
back. In standard adaptive control methodologies, a control law
is first designed assuming a complete knowledge of the system.
Thereafter, the unknown system parameters, which appear in the
control law, are replaced by estimated values that are supplied
by the adaptation law.

In contrast, we decompose the original system into a “par-
ticular” and a “homogeneous” half, whose states are predicted
by the two components that are described briefly; thereafter, a
controller is designed for the homogeneous half alone so that its
output tracks the difference between the system output and the
output of the particular component. The homogeneous half is a
linear time-invariant system with desirable convergence prop-
erties, and a feed-forward tracking control law can be readily
designed for it.

Recall that the output of interest is fOL & (ty)dy =&(t, L),
from (7). It represents the integrated value of the wing dihedral
which, in turn, is a measure of the side force produced by the
wing. In order to ensure that this output tracks the desired ref-
erence signal R(t), the control signal u(t) [also = éhy (t,0)]is
designed using trajectory planning to ensure that f n(t, L) tracks
R(t) — & »(t, L). In particular, &, is approximated via a polyno-
mial expansion that involves powers of y, and the coefficients
are solved using the PDE and the boundary conditions.

Remark 8: The observer-based approach that is presented
here can be used for a wide class of functions F'(¢,y) which,
as we argued earlier, are usually nonlinear in &,. Therefore,
it is difficult to construct a polynomial expansion for F'(t,y).
Although trajectory planning involves a polynomial expansion,
it is only done for the homogeneous half, and consequently,
there is no need to obtain a polynomial expansion for F'(t,y).

Remark 9: The error between the perturbation observer and
the system is uniformly bounded, and the bound can be made
arbitrarily small by increasing ~,. The trajectory planning ap-
proach creates a low-pass-filtered control signal, as shown in
the next section, and therefore, the stability and the robustness
of the system are not affected if a large value is chosen for ~, .

Remark 10: One limitation of using a perturbation observer in
the present form is that it requires a knowledge of £ (¢). However,
£&(t) can be obtained using an array of sensors and spline fitting.
Such an array of sensors is light and cheap enough to implement
in a practical setting, and more so compared with a distributed
actuation scheme.

D. Trajectory Planning for the Homogeneous Component of
the Observer (&)

For a reference signal R(t) from (7), let Ry, (t) = R(t) —
ép(t, L) denote the reference signal that has to be tracked by
éh, (t, L), as shown in Fig. 4. It may be possible to use more than
one method to design a control signal u(t), which ensures that
the output of the homogeneous half tracks the reference signal.
This freedom results largely from the fact that the homogeneous
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component is an exponentially stable linear time-invariant sys-
tem with desirable convergence properties (by design). In this
section, we illustrate a trajectory-planning approach, as we did
for wing twist.

The term éh, (t,y) can be approximated by a polynomial of
the form

N )y
Gty =Y ”’ (59)
Jj=1
where N needs to be chosen to ensure desirable tracking prop-
erties. Note that the coefficient of 3 is zero because & (t,0) = 0.
Substituting (59) into the éh dynamics in (52) yields the set
of ODEs

iy + bypry + appn; = —byTj+a — apnj+a- (60)

The boundary conditions, together with &, (, L) = Ry, (t), yield

the following algebraic equations:

N -2 N -3

1j+2(t)L —0 nj+3 ()L -0
j=0 gt j=0 gt
N B
t)L/
S BOZ k. (61)
j=1

The value of NV can be chosen to ensure good tracking. Note
that the éh dynamics are of fourth order in y. Therefore, we
need to choose N > 5, and the gain p must be chosen to ensure
stability of the resulting set of ODEs. For any choice of NV,
we have N — 4 differential equations (for 77 to ny_4) and 3
constraints, a total of N — 1 equations. The underdetermined
problem may be resolved by setting one variable among 1y 3,
1NN -2, and ny_1 to zero, or imposing an additional constraint
on the system.

Suppose that we set N = 5,1.e.,n56 =n7 = --- = 0. We also
set 14 (t) = 0.3 This yields the differential equation

i (t) + bppiy (t) + appmy (t) + byis (t) + ayns (t) = 0.

Constraint (61) can be solved to obtain 75 (¢) in terms of ()

and Ry, (t)
w0 = 15 (-0 + 20).

From (59), it follows that the main bending control input is given
by

(62)

(63)

u(t) = &y (t,0) = m (¢)

where 7 (t) is obtained by integrating the following ODE, ob-
tained in turn by substituting (63) into (62):

i+ (p= 33 )@+ (p- 75 ) mo

- (ﬁ) (by Ry, (t) + ap Ry (1)).

(64)

(65)

3Motivation: if Ry, is a constant, then 74 = 0 is in the steady-state solution.
Therefore, this approximation works, at least, for a class of slow time-varying
signals.

Note that the gain p has to be chosen so that p > 12/L* for
75 (t) to be stable. This completes the design of a trajectory
planning-based tracking controller for bending.

VI. SIMULATIONS

Simulations are carried out in MATLAB by using a Galerkin-
based approach to convert the PDE system into ODEs. The
Galerkin truncation is not used as a basis for control law design;
therefore, no danger of “spillover instability” arises. The twist
0(t,y) is expressed as a weighted sum of basis functions ¢; (y),
i=1,2,...,nand ¢¥(y)

0(t,y) = s(t)(y)

+ Z i (t)$i(y)

¢i(0) = ¢;(L) =0
where s(t) is the boundary control input. If boundary control is
applied at the wing root, then ¢(y) has to be chosen to satisfy
¥/'(L) = 0 and 9(0) = 1. On the other hand, if the boundary
control is applied at the wing tip, we choose 1 to satisfy ¢)(0) =
Oand /(L) =1
The PDE in (32) can be rewritten as

(66)

+ Z 771 ¢7 Z ¢” b777 + am( ))
— " (y)(bs + as)
=M (w(y)s + Z i (t)az:(y)) : (67)

Using Galerkin’s method, (67) is converted to a set of ODEs

c(8(t) — Ms(t)) + d(bs + as(t))
+ [A]((t) — Mn(t)) + [B](bi(t) + an(t)) =0 (68)
where
e= | Cuew, d=- / W
L
A= [ o ay, 13- [Cot a0
0 0
The reader will recall that ¢ is a scalar, and ¢ = [¢1, ¢, . .. ¢, |T

is a vector. The control s(t) is expressed similarly in terms of
¢, 1, and 7 to obtain a set of ODEs, which are simulated to
approximate the response of the system.

A. Root Control of Wing Twist

Fig. 5 demonstrates the regulation of twist dynamics us-
ing the backstepping controller that is derived in (31), with
the transformation in (12) and (17). The value of M/a was
set to 8, where a = Gj/Ip. A value of p =4 yielded an
unstable response, while the response was stable for p = 8.
Recall the following condition for stability with L = 1: p >
M/a — 7% /4 =~ 5.5. The backstepping controller works even
when M(y) = M(1 — y?) is used (to mimic an elliptical lift
distribution over the wing) instead of a constant M (y) = M.
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Fig. 5. Regulation of the twist dynamics using the backstepping controller in

(31). The plots were obtained for M /a = 8, while p was increased to ensure
stability. Each plot is a collection of appropriately chosen snapshots in the
interval 0 < ¢ < 30 s, with the lines getting darker with time. In plots (b) and
(), O(t,y) converges to zero exponentially. (a) Unstable response with p = 4.
(b) Stable response with p = 8. (c) Stable response with p = 8 for spatially
varying M (y).

The backstepping controller can be added on top of a tracking
controller.

Each plot in Fig. 5 is a collection of snapshots that are ap-
propriately chosen in the interval 0 < ¢ < 30 s, with the lines
getting darker with time. The system state 6(¢, y) converges to
zero exponentially when p = 8.

B. Tip Control of Wing Twist

Fig. 6 shows simulation results for the twist dynamics, when
the actuator is located at the wing tip. The value of M/a was
chosen so that stability is assured without the need for a ded-
icated stabilizing controller. The first plot was obtained for a
system, where the aerodynamics were assumed to be linear but
unknown. The second plot was assumed linear unknown aero-
dynamics such that the system was unstable in the open loop,
but within the enhanced stability margin that is described in
Section IV-B. The third plot (bottom row) was obtained for the
case where the aerodynamics were additionally spatially vary-
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Fig. 6. Twist profile of the wing as a function of time when the the adaptive
controller in (41) is applied at the wing tip. Three cases have been examined

here, with fOL 0(t,y)dy = 0.05 as the desired output. The first three plots are
appropriately chosen snapshots in the interval 0 < ¢t < 30 s, with lines get-
ting darker with time. The error metric e(¢) converges to zero exponentially.
(a) M unknown, constant, open loop stable. (b) Unknown M, constant,
open loop unstable. (c) Spatially varying, unknown M (y), unstable dynamics.
(d) Time history of e(t), u(t).

ing. The fourth plot depicts the time histories of the tracking
error e(t) and the control signal u(t), respectively. In all cases,
the twist amplitude converges to the steady-state value with
satisfactory transients. The error metric (5) converges to zero
exponentially.

C. Comparison of Finite-State Approximation-Based and
Trajectory Planning-Based Controllers for Bending

Using Galerkin’s method, the beam bending dynamics (46),
with the control input «(t) and its derivative u(t) as additional
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Fig. 7. Comparison of controllers derived from finite-state approximations of
the open loop and the homogeneous component, respectively, with a controller
obtained using trajectory planning [41]. (a) Traditional ODE control. (b) PDE
perturbation observer with trajectory planning.

states, can be recast into the form

& =Ax+ Bu+ f(x),y=Cx (70)

where @(t) equals the highest derivative of u(t), i.e., i(t) =
u(t). The system can be stabilized if (A, B) is stabilizable. In
particular, vectors B and C' depend strongly on the choice of the
basis functions. The unmatched nonlinearity f(z) can affect the
tracking error as well as the stability of the closed-loop system
if not compensated adequately. The unmatched nonlinearity can
be tackled using backstepping, or a more direct approach such
as in [23, Ch. 3, pp. 140-174].

Fig. 7 compares the performance of two controllers. The first
is based on [23] and designed using a finite-state approximation
of the beam, and the other is based on the perturbation observer
and trajectory planning approach in Section V. The beam is
assumed to be loaded uniformly, but for the purpose of control
design, this load is treated as an unknown. This simple loading
condition is enough to create an unmatched uncertainty in the
finite-state approximation.

Fig. 7(a) shows the performance of a controller, which is de-
signed using the finite-state approximation. The tracking error
is less than 5% of the signal amplitude, and there is a phase lag
in the system output when compared with the reference signal.
The tracking error as well as the phase lag arises due to the use
of alow-pass filter in the generation of the control signal. On the
other hand, Fig. 7(b) [41] shows the tracking performance of the
proposed controller which is derived from trajectory planning
using a seventh degree polynomial and the perturbation observer
in Section V-C. The amplitude of the tracking error is consid-
erably smaller than the previous approach, and the phase lag is
almost eliminated. For the system that is considered in this il-
lustration, the proposed controller outperforms the conventional
ODE-based controller. Note that the trajectory planning-based

Fig. 8.

Experimental setup showing the beam and power supply.

control signal, which is generated using (62) and (64), is it-
self a low-pass filter, albeit one that ensures, by design, a small
tracking error.

VII. EXPERIMENTAL RESULTS

In this section, we describe some successful experiments,
which were performed to validate the efficacy of the pertur-
bation observer-based controller in Section V. Fig. 8 shows
the experimental setup. A long thin beam with a rectangular
cross section is utilized for experiments. It is rigidly clamped
at one end, while the other end is free to be controlled. Two
small permanent magnets attached to the tip are acted on by an
electromagnet whose magnetic field can be controlled by spec-
ifying a current and varying the voltage using a programmable
power supply (Agilent Technologies E3642A) that interfaces
with MATLAB. The interaction between the permanent mag-
nets and the magnetic field of the electromagnet produces a
force that acts on the beam tip.

Retroreflective markers are placed at seven specific points
along the length of the beam, and the VICON motion capture
system is used to track the coordinates of those markers. Bending
displacement is determined by calculating the distance between
the markers on the beam in the deformed state, and the coor-
dinates of the corresponding markers in the undeformed state.
The bending displacement is interpolated from the data that are
obtained from the VICON system to obtain the deformation pro-
file. This information is used to calculate the tip force, which is
the control variable.

The electromagnet is characterized to determine a relation-
ship between the required voltage and the commanded tip force.
The tip deflection &}, of a cantilever beam as a function of the
applied tip force, Fiip, (= E1y &,y (t, L)), is given by

A RipLS 3€tip
p=&(t L)=—=22 .
Sup =&(4, L) 3EI, L3

The electromagnet is calibrated by measuring the steady-state
tip deflection as a function of the input voltage so that

ip ~ 1.33 x 1073 W°

= u(t) =&y (t,L)=

(71)

(72)

where W denotes the voltage of the signal, which is sent to the
electromagnet. Combining (71) and (72) with the fact that the



638
x107° ‘
5 — Actual
—Reference
W I
— 0 | .
E | }“ 111 I
:-'j T o
T -5 |
-10}
0 5 10 15 20 25 30
Time [s]
(a)
x107° . ‘ ‘ ‘
5 —Actual
—Reference
E
-
g
-15¢ ; : i i i 1
0 5 10 15 20 25 30
Time [s]
(b)
Fig. 9. Time histories of the tip displacement (£(¢, L)), when a sinusoidal

reference signal was sent to the system. An impulse-like disturbance was also
administered to the beam. The controller was disabled in the first case to provide
a comparison between the open- and closed-loop systems. (a) Open loop with
an impulse perturbation. (b) PDE boundary control with impulse perturbation.

control input u(t) = &, (t, L) = Fiip/EI, results in

I%

4x1078
_ A0 s L 30.67Lu(t)

u(t) 5 (73)
The control law w(t) is obtained from an equation, which is
analogous to (64) [19]

uy = 220 BB )~ Ry -0,

o)+ (p+ 37 ) G (0 + (o)

180

v

The gain was set to p = 500 for the experiments. Fig. 9 shows
the time history of the tip displacement for two cases. In both
cases, the system was given an impulsive disturbance midway
through the experiments at ¢ = 17 s, in addition to persistent
external disturbances in form of a mild breeze in the experimen-
tal area. The open-loop response is noisy due to the persistent
external disturbances. The amplitude takes a very long time to
converge after the impulsive perturbation at 17 s. In comparison,
the closed-loop response shows a negligible tracking error and
rapid convergence to the reference signal after the impulsive
perturbation. Additional experimental results, including those
for root control of beam bending, can be found in [19] and [42].

(bth (t) + ap Ry, (t)) . (74)
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VIII. CONCLUSION

This paper has introduced a boundary control formulation for
a class of PDEs whose output consists of a spatial integral of
the state variable. Although the primary focus of this paper was
on the control of flexible wings, this boundary control problem
is directly relevant to the control of flexible continuum robotic
arms described by PDEs.

In order to control wing twist using a root-based actuator,
a tracking controller, which was based on PDE backstepping
was designed to handle the output that has an infinite relative
degree with respect to the root actuation. On the other hand,
when twisting moment at the wing tip was the control input,
it was shown that the system had a relative degree of 2 with
respect to the input—output combination, which facilitated the
design of a robust adaptive tracking controller. It was shown that
the tracking controller alone could yield a 16-fold improvement
in the stability margin of the system.

The force distribution that drives bending is far too com-
plicated to be handled by backstepping alone, which motivated
the development of a new perturbation-observer-based approach
that is presented in Section V. The two-stage-observer-based
tracking controller was designed to ensure that the wing tip
tracked the desired reference profile with the bending PDE. The
first component of the observer compensated for the nonlinear-
ities and unmodeled dynamics, while the other was used exclu-
sively for deriving the control signal. The proposed perturbation-
observer-based controller was implemented in an experimental
setup, which allowed us to control the bending displacement
of the tip of a beam by applying a force at the wing tip. The
controller performed as expected, and demonstrated reference
signal tracking as well as disturbance rejection.
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Dyadic Perturbation Observer Framework for
Control of a Class of Nonlinear PDE/ODE Systems

Aditya A. Paranjape and Soon-Jo Chung

Abstract—This paper presents the general theory of the dyadic
perturbation observer (DPO) framework as a generic method for
controlling a class of systems described by partial and/or ordinary
differential equations. The method is particularly applicable to
boundary control problems for systems described by partial
differential equations (PDEs). Conditions for closed-loop stability
and robustness are derived using the small gain theorem, and the
results are further specialised for finite dimensional systems.

I. INTRODUCTION

The Dyadic Perturbation Observer (DPO) framework was
first presented, under the title of perturbation observer-based
control, in [12] although its closed-loop stability was not
explicitly proved. The method was demonstrated successfully
in experiments involving control of beam bending in [11],
[12]. The objective of this note is to present the general
theory of the DPO framework as a generic method for a
class of systems described by ordinary and partial differential
equations (ODEs and PDEs), including combinations of both,
and derive conditions for closed-loop stability and robustness.

Systems described by a combination of ODEs and PDEs
arise naturally in engineering applications, such as flexible
aircraft wings (flexible wing structure combined with the rigid
body aircraft dynamics), robotic surgical systems (a multi-
segmented flexible robotic arm), temperature control systems
(heat diffusion and mass flow of air), etc. There are several
well- established families of methods for designing controllers
for finite dimensional systems, such as dynamic inversion,
backstepping, gain scheduling, and Lyapunov function-based
approaches. The important feature of all these methods is that
they apply to any given class of ODEs, although it may not
always be convenient to apply one particular method to a given
system. In comparison, systems described by nonlinear PDEs
are controlled either through their ODE approximations [1],
[2] or using methods which leave the PDE intact and yield
closed-loop stability and performance guarantees, but tend to
require information about the exact structure of the PDE [6],
(81, [9], [13].

The DPO framework is designed primarily for the following
class of PDE systems, although it applies equally well to ODE
systems:

» Ow(t, x)

we(t,x) = 5 = Aw(t,z) + f(t,z,w(t,z)) (1)

The authors are with the Department of Aerospace Engineering and the
Coordinated Science Laboratory at the University of Illinois at Urbana-
Champaign. Email: {paranja2, sjchung}@illinois.edu. This research was
supported by NSF (IIS-1253758) and ARO (W911NF-10-1-0296).

where w(t,x) is the state of the system, x is the spatial
coordinate, and w denotes the vector of w and its partial spatial
derivatives. The problem formulation will be made precise
later in the paper. Note that the operator A is a linear, time-
invariant operator. The nonlinearities are all captured by the
function f(-). We denote by w, the partial derivative dw/0x,
additional subscripts denote higher order partial derivatives
with respect to those variables, and w,, (¢, x) is defined like-
wise.

Example 1. In the most simplified form, the bending dynam-
ics of a wing attached to a moving aircraft are given by [10]

gtt + El(ngtL,LL;E + EI.L.L‘L) = F(l‘, éa «, V)a (2)
§(t7 O) = ga:(t> O) = g:r:z:(t7 L) = §$$m(ta L) =0

1 L g
v=q— — F(t d =

1 L
q = 7 I(L/ F(t,x,&,a)dm + Mtail
Iq 0

where 77 > 0 is the coefficient of Kelvin-Voigt damping,
while F(t,y,&,a) denotes the nonlinear acrodynamic force
terms on the wing per unit span. The dynamics of the angle
of attack o and the pitch rate ¢ capture the rigid body
motion of the aircraft at speed V. The term M,,; denotes
the control moment from the horizontal tail of the aircraft,
x4 is a reference length which measures the distance between
the wing and the center of mass of the aircraft, and I, isthe
principal moment of inertia about the pitching axis.

The left-hand side of (2) captures the elastic behavior of
the wing. Moreover, for a wing immersed in an external flow
field, the stack £ is given by & = [, &, &,], although other
spatio-temporal derivatives may be included for completeness.
Control design for this problem, with &,(¢,0) treated as the
control input, has been addressed in [12], while the stability
of the closed loop is addressed in this paper.

The DPO framework decomposes the system in (1) into
two halves for the purpose of control design: one half (called
the particular half) only accommodates the nonlinearity (f(-)
in (1)), while the other half (called the homogeneous half)
accommodates only the control input (which could be a
boundary condition of a PDE). The DPO architecture has been
illustrated in Fig. 1. The control signal is designed to ensure
that the output of the homogeneous half tracks the desired
reference signal minus the output of the particular half, thereby
ensuring that the output of the two halves put together tracks
the reference signal. The stability of the closed loop is verified



explicitly using the small gain theorem. Note that the observer
is used (in line with the certainty equivalence principle) to
identify the particular and homogeneous state variables. By
nature of its design, the DPO framework is inherently adaptive
in nature so that it can accommodate modeling and parametric
uncertainties, as well as external disturbances (e.g., see [12]
for the use of projection-based adaptive control along with the
DPO).

w(t) u(t)
System
Wi(?)
¥ ]
Particular Y p(t) Homogeneous
Half Half
r(t)

Fig. 1. A block diagram of the DPO framework, with the subscripts p and
h denoting the particular and homogeneous components, respectively.

The salient features of the DPO method are:

1) The DPO control design is dimension-independent; i.e.,
it can be applied to finite as well as infinite dimensional
systems (or a combination thereof).

2) The DPO does not prescribe any particular control
design for the homogeneous half; any control signal that
guarantees tracking is admissible, including nonlinear
control signals, as long as the resulting closed-loop
system satisfies a small-gain condition.

The paper is organized as follows. Mathematical prelim-
inaries are recapitulated in Sec. II, followed by the problem
formulation in Sec. III. The DPO control architecture has been
presented in Sec. IV, while a finite dimensional analogue is
discussed briefly in Sec. V. Simulation results illustrating the
DPO framework are presented in Sec. VL.

II. PRELIMINARIES

Let Z be a Hilbert space with the usual inner product
defined by (21, 22) = fOL 21 zody for any 21, 2o € Z, where
L denotes the total span of the spatial dimension. We are
concerned with variables w(t,z) € R x Z, with = € [0, L].
We define the space W = R x Z, so that w(t,z) € W. The
space W is a Banach space with the norm defined as follows.

Definition 1. Given w(t,z) € W, we define the following

norms:
L
[w®llz = /[ wt.oTw(o)ds
0
L
lwllw = esssup /w(t,x)Tw(t,x)dx 3)
t>0 | Jo

while the truncated norm is given by

L
\// w(t, z)Tw(t, v)dz
o<t<r 0

o]l = ess sup

Definition 2. Given an operator A : W — W we denote its
induced norm by || A||;.

For a time-varying signal p(t) € R, we define its £,
norm as ||pllz, = [y |p(t)|dt. It can be checked that
IAll: = llomax.z(AE)) |y, where omax (A(t)) is a time-
varying signal and the maximum singular value is taken over
all values of x at each instant in time. It must be noted that
the £1 norm is taken with respect to time.

Definition 3. Given w(t,z) € W, let w(t, x) denote a vector
of w and its partial spatial derivatives with orders less than
that of the highest order in the operator A. This is a fairly
straight-forward extension and allows for accommodating
forcing functions that depend on the partial derivatives of w.

Assumption 1. We set all initial conditions to zero. This does
not alter the fundamental nature of the result because it only
introduces exponentially decaying terms.

Next, we state a variation-of-constants-like formula for
infinite dimensional systems (Lemma 3.1.2, [3]).

Lemma 1. Consider a system w = Aw + f(t,z,w), w(t) =
wo € D(A) CW, where A is the infinitesimal generator of a
semigroup T (t) and D(A) denotes the domain of A. Suppose
that f(-) is a smooth function of its arguments. Then, w(t) is
given by

w(t) =T (H)wo + /0 Tt—71)f(r,z,w(r))dr

where wg = w(0, -), which is set to zero by Assumption 1.

Definition 4. Given a semi-group T (t), we define the operator
T(t)*: Wi W so that Vq(t,z) € Wand Vit > 0,

T(t) % qlt, z) = / T(t — r)q(r,z) dr

We further define Tx 2 limy oo T(t)*, and the induced norm

1T [|i £ sup | T(t) ||
>0

In order to help establish point-wise boundedness in space
(as against integral boundedness in the sense of Z), we
introduce Agmon’s inequality (Lemma 2.4, [8]).

Lemma 2 (Agmon’s inequality). Given w(t,z) satisfying
lw(t)]|z < oo and ||wy(t)||z < oo, we have

omax, |wlt, 2)* < |w(t,0)]” + 2w (t)l|zllwe (t)llz

Agmon’s inequality allows us to bound the L., norm of
signals in the spatial domain provided the spatial Z norms of
the signals and their first derivatives are bounded.

Definition 5. Given p(t) € R™ with components p;(t) (1 <
i < n), we define

IP(8) o = max |pi(t)

[pllc.. = esssup [|p(t)[loo, [IPllzo,r =ess sup [[p(t)[le
t>0 0<t<r

If |Ipllz., < oo, then we denote p € L.



Definition 6. The £ norm of a linear operator F : L +—
LT is defined as | F||z, = SUD )| o =1 | Fpllc., pELY

III. PROBLEM FORMULATION

We consider a class of systems described by PDEs of the
form

wy = Aw+ f(t,z,w), Bw =u(t), Nw =0, yt) =Cw 4)

where w £ w(t, x); u(t), y(t) € R, and A is the infinitesimal
generator of a continuous semigroup 7 (¢). The right-hand
side, f(t,z,w), is a nonlinear function of its arguments. The
operators A and B capture, respectively, the homogeneous
boundary conditions and the boundary control input. The
control objective is to ensure that the toutput y(t) tracks a
reference signal r(t) € R.

Assumption 2. The semigroup T (t) (whose infinitesimal
generator is A in (4)) satisfies | T(t)|; < Me “'Vt > 0,
where w > 0 is a constant. Moreover, ||T % ||; is bounded.

Thus, the system dynamics can be viewed as the sum
of a linear, exponentially stable, well-posed operator and an
external nonlinear forcing term.

Assumption 3. For every p > 0, there exist positive constants
v1(p) and vo(p) such that if ||w|lw, - < p for some T > 0, then

”f(tv €, W)”W,T < Vl(p)Hw”W,T + VQ(p)v
In general, v1(p) and vo(p) are class K functions of p.

The above assumption essentially implies that the spatial
derivatives of w(t,x) enter through bounded functions. As
an illustration, in Example 1, the spatial derivative &, (¢, z)
enters through the trigonometric functions cos(&; (¢, z)) and

sin(&, (¢, x)).

Assumption 4. The output operator C in (4) is bounded; i.e.,
Iyl 2. = ICw(t, )| 2., < K||w||w for some constant K.

Example 2. Let y(t) = fOLw(t,:c)d:v. Then, |y(t)| =
L

oy wito)dy| < VIlw@®lz = lyle. < VElwl:

Note that the inequality is a consequence of w(t,x) lying in

a Hilbert space. Assumption 4 is relaxed in Sec. IV-C. An

example of an unbounded operator is the value of w(t, z) at
a boundary, e.g., Cw(t,z) = w(t,0).

IV. CONTROL DESIGN USING DPO
A. Design of the Perturbation Observers

We use the operator ~ to denote observer states, and the
subscripts p and & to denote states of the particular and the
homogeneous halves, respectively. The dynamics of the two
halves are given by

Wy = Ay, + f(t,x,w), B, = Ny, =0, §, = Cid, (5)
Wpp = Ay, Bwp =u(t), Ny =0, g, =Cwp,  (6)

Recall that the subscript ¢ denotes the partial derivative 9/0t.
Using the projection operator to design f(+), such as in [12],
we can show the following result.

Lemma 3. If ||w||lw < p, then there exist constants ko =
ko(p) and k1 = k1(p) such that ||w,|lw < Kol|lw|lw + k1

Proof: The proof follows by applying Lemma 1 to (5) and
computing the norm of w,. B

We define the observation error W = W, + Wy — w. Then,
from (4), (5), and (6), we conclude that the dynamics of w
are given by

wt :Aw'i_f(tvwi) —f(t,.’L‘,W),
B = N = 0, §(t) = Ci(t, ) %

Lemma 4. [t is possible to ensure that ||w(t)||z is uniformly
bounded Nt > 0, and the bound can be made arbitrarily small.
It follows as a corollary that §(t) is uniformly bounded and
can be made arbitrarily small.

Proof: The boundedness of ||w]||z is proved in [12] (Theo-
rem 4), while that of §(¢) follows from Assumption 4. H

B. DPO Control Synthesis and Closed-Loop Stability Analysis

We design the control signal u(¢) to ensure that the output
of the homogeneous half, g, (¢) in (6), tracks a reference signal
r(t) —p(t), where r(t) is the reference signal for the original
system (4), where g, is the output of the particular half (5).
Lemma 4 would then ensure that the output y(t) of the system
(4) tracks the reference signal r(t), as desired. We can write
the input-output dynamics of the linear, exponentially stable
homogeneous half in (6) in the Laplace domain [4]: §x(s) =
G.(s)u(s), where the transfer function G.(s) depends on A
and the boundary conditions, as explained in [4]. We design
u(t) in the Laplace domain as follows:

u(s) = H(s)(r(s) = Gp(s)) = H(s)(r(s) — Cip(s)) ~ (8)

The ideal choice for H(s) would then be 1/G.(s) which is, in
general, neither proper nor stable. Therefore, we choose H (s)
to satisfy H(0)G.(0) = 1 and impose further conditions for
closed-loop stability (see Theorem 1). Interestingly, a poly-
nomial approximation of the state w;, yields a low-pass filter
H (s) which ensures that u(t) is sufficiently differentiable, and
all derivatives are bounded [11], [12].
The next result asserts the boundedness of control inputs.

Lemma 5. If ||w|lw < p, then the control law in (8)
ensures that there exist constants 0;. = 0;-(p, H(s)), diw =
Siw(ps H(s)), and 6y, = 6iu(p, H(s)) such that |[u]| . <
Sirllrll e + Siwllwllw + G where ul®(t) = 348
uO(t) = u(t).

Proof: From (8), we get |[ulle. < [H(s)|c,(rllce +
ICWpllz..). The proof follows from Assumption 4 and
Lemma 3. B

We will prove the bounded-input-bounded-output (BIBO)
stability of the closed-loop (in the sense of L., boundedness
of signals) using the small gain theorem. The first result asserts
that the boundary control system in (4) can be recast into a

PDE system with homogeneous boundary conditions (Theorem
3.3.3, [3D).

and




Lemma 6. The coordinate transform v = w — Bu, where the
operator (3 satisfies BBu = v and N Bu = 0, transforms the
system (4) into the form

v=Av+ ABu— Bu+ f(t,y,w), Bu=Nv=0 (9)

Consider the system in (9), and suppose ||w(t)||z = p for
some time ¢ > 0 and furthermore, ||w(7)|lz < p VT < t.
Using Lemma 1, Assumption 3 and Lemma 5, we get

[ollw.e < 1T % lli(Gollwllw.e + dull7llco + 52)

where do = v0(p) + [|-ABli00w + [|B|i01w, 61 = || AB]libor +
8ll:01r, and J2 = v1(p) + [ ABlidou + ||B|i01u- Since w =
v + Bu, using the triangle inequality and Lemma 5, we get
l[wllw,e < T lls(bollwllw,e +d1llrllc. + b2)
+18ll: (dowllwllw,e + dor |7l 2o + d0u)

Aqllr + A
= ful < 22lles 2o (10)
Ao = [T x[lido + [|Bllid0w, A1 = [T * [:01 + [|B]l:d0r,
Ay = |IT %02 + |8l :00u (11)

We prove the following result.

Theorem 1. The closed-loop system (4), (5), (6), and (8) is
BIBO stable in the sense of L if there exists a stable, strictly
proper H(s) and a constant p such that

Arlrflz, + A2 <p—c
1- A

where A;’s are defined in (11), and € > 0 is arbitrarily small

12)

Proof: Suppose that ||w||w: = ||w(t)||z = p for some ¢ > 0.
Then, from (10) and (12), it follows that ||w|w: < p—e€ < p,
which contradicts the assumption that ||w||w : = p, and shows
that ||w|lw < p V¢. This completes the proof. B

C. Redressing Assumption 4 and Generalization

It is possible to relax Assumption 4 by deriving a stability
condition of the form in Theorem 1 for a system consisting
of the dynamics of w rather than just w. Recall that w is the
vector of w and its partial spatial derivatives. The resulting
stability condition is cumbersome and difficult to verify in a
practical setting; its representation in a more tractable form is
an open problem. It must be noted that the w dynamics are
constructed purely as an analytical tool to verify the stability
of the closed loop system (4), (5), (6), and (8).

We start by showing a number of properties. Given the
system (4), we can differentiate the state variable w(t, z) with
respect to = and recast it into the form

w = A(w)w + f(t,z,w)

Bw =u(t), Nw =0, y(t) =Cw (13)

Example 3. Consider the PDE system &; + £, = sin(&,) +
22, with the boundary control £(¢,0) = u(t). The array & =
[€, &.]. From the above equation, we have that

g:}ct + é-a:x:r: = COS(fa:)fm + 2*7;7

so that, using the notation from (13),
62
Ag) = | "o
© [ g
B¢ = £(t,0)

ft,z, &) = [sin(&) +2°, 2a]7

Note that the operator A(&) is the sum of the original operator
A along the diagonal and additional terms that arise due to
partial derivatives of & on the right-hand side. Note that the
representation is not unique, in that

_ _9 0
A§) = 9% 2

P )
c08(€x) gz~ a2
is also an admissible representation. It may be possible to use
convex combinations of admissible representations in order to
elicit better global convergence properties (since each repre-
sentation is generally nonlinear) as in [5], but this possibility

is not explored in the present paper.

0
2
m@ggl

We prove the boundness of C1,,, which is essential to ensure
the boundedness of the control signal «(¢) in (8). This result
is a direct generalization of Lemma 3.

Lemma 7. If there exist constants pi, po > 0 such that
lw(t)llz < p1 and ||wy(t)|lz < p2 for some t > 0, then
there exist constants ko = ko(p1, p2) and k1 = K1(p1, p2)
such that

max (||, () |z, |Wp(t)]z) < kollw(t)|lz +r1  (14)
so that
|9(1)] = [Caop (1) * < 2(kolw(t) ||z + K1)

Proof: To prove (11), we note that the dynamics of w,, ;
can be written as

15)

UAJp’g;t = Au?p,x + g(t, xZ, W)

where

of(t,x,w) Of(t,x,w)
oz T oW
Applying Lemma 1 and taking the norm of both sides yields
(14), from which (15) follows as a direct consequence of
applying Agmon’s inequality (Lemma 2). B
We state the main result and allude to the fact that its proof
is identical to Theorem 1.

g(t,z,w) =

Theorem 2. Consider the system (13). Suppose that a stable
representation A(w) exists and furthermore, there exists an
operator Ay which gives a lower bound on the decay rate of
trajectories corresponding to A(w). Then there exists a semi-
group Ty(t) corresponding to Agy satisfying the growth bound
similar to Assumption 2. Furthermore, there exists a BIBO (in
the sense of L) stabilizing controller given by (5), (6), and
(8) provided the small gain condition of Theorem 1 is satisfied
(with the operator T (t) replaced by Ty(t)).

Although we derived the above results for a class of systems
of the form w = Aw + f(t,z,w) with A stable, the method
can be readily used for systems of the form w = Azw +



f(t,z,w), where A, need not be stable and could even be
zero. The system be rewritten as

w=Aw+h(t,z,w), h(t,z,w)= f(t,z,w)+ Agw— Aw

(16)
and Theorem 2 can be employed directly. Conditions under
which a particular A (as compared to some stable A) exists
is an open problem.

V. INSIGHTS FROM FINITE DIMENSIONAL ODE SYSTEMS

In this section, we will start with a finite-dimensional
linear time-invariant (LTI) system to identify conditions under
which a DPO controller would lead to a stable closed-loop
system. Thereafter, we will specialize Theorem 1 to finite
dimensional nonlinear systems. The resulting controller and
the small gain stability condition will be similar to those
obtained in £; adaptive control [7]. The conditions obtained in
this section would be important while using DPO in a practical
setting, where hardware implementation and verification and
validation protocols would run in a finite dimensional setting.

A. Application to Linear Time-Invariant Systems
Consider the ODE system

w(t) = Aw(t)+ Bu(t), y(t) = Cw(t) + Du(t) (17)

where w € R", and u,y € R. The system is assumed to be
observable and controllable. The control objective is to ensure
that y(t) tracks a reference signal r(t).

The particular and the homogenous halves are given by

p(t) = Am(t) = BKw(t), G,(t) = Ciy (1)
bn(t) = Apbn(8) + Bu(t), §i(t) = Ctn(t) + Du(t) (18)

where A,, = A+ BK is Hurwitz. Let & = W, + w, —w
denote the error between the observer in (18) and the system
in (17). The dynamics of @ are given by w(t) = A,,w(t) and
7(t) = Cw(t). Clearly, w(t) — 0 and §(t) — 0 exponentially.

Let G(s) = C(sI — A,,)"'B and G.(s) = G(s) + D.
Then, from (18), it follows that §5(s) = Gc(s)u(s) and
9p(s) = —G(s)Kw(s). A control signal analogous to (8)
is given by u(s) = H(s)(r(s) — gp(s)), so that gp(s) =
Ge(s)H(s)(r(s)—yp(s)). We want g, (t) to track () — g, ().
The ideal choice for H(s) would then be 1/G.(s) which is,
in general, neither proper nor stable. Therefore, we choose
H(s) so that H(0)G.(0) = 1 to guarantee asymptotic tracking
and impose further conditions on H(s) to ensure a stable
closed-loop system. The closed-loop dynamics are obtained
by substituting for u(t) in (17), whose Laplace transform is
given by sw(s) = Az(s)+BH(s)(r(s)+G(s)Kw(s)). Since
A=A, — BK, we get

w(s) = (sI— A, +BK(1-G(s)H(s))) ' H(s)Br(s) (19)

Theorem 3. The closed-loop system (17) and (18) is expo-
nentially stable if and only there exist K € R™ and a stable
transfer function H (s) such that: (a) A+ BK is Hurwitz, and
(b) all poles of (I, + (sI — A,,) 'BK (1 — G(s)H(s))) 'B
lie in the open left half plane, where G(s) = C(sI — A,,) ' B
and I, is the identity matrix of size n.

Proof: We require A,, to be Hurwitz so that the the observation
error (w) dynamics are stable. Part (b) can be proved by
writing the closed-loop system in the form (19). W

B. Application to Finite Dimensional Nonlinear Systems

Next, we assume that the system is of the form

w=Apw+bu+ f(w), y=cw (20)

where w € R”, f : R" — R", and u, y € R. The nonlinearity
f(w) is generally not matched to u(t), i.e., it is not always
possible to write f(w) = bg(w) for some nonlinear g(w).

Remark 1. The system could be nonlinear and of the form
w = fo(w) + bu, in which case, in (17), f(w) = fo(w) —
Apw. Clearly, A, is also a design element, constrained by
the stability and performance requirements.

1) Perturbation Observer Design: Let W, and 1 denote
the states of the particular and the homogeneous half, and let
W = Wy + Wp. Let W = @ — w. The dynamics of the two
halves are given by

2n
(22)

Wy = Aty + f(w), G, = iy
Wy = Ay + bu, gp = ciy

where f(w) is the predicted value of f(w). This can be done
using a wide range of methods, such as the projection operator
and we retain this notation for simplicity.

2) Design of Control Signal: As in (8), we choose a control
signal u(t) whose Laplace transform is given by

u(s) = H(s)(r(s) = 4n(s)) (23)

so that g (s) = c(sI — An)"TbH(s)(r(s) — Gp(s)), and we
prescribe H(0) = —1/(cA,b).

3) Closed-Loop Stability: In order to show stability of the
closed-loop, we need to introduce some notation, following
that introduced earlier for the general system represented in
the operator form.

Assumption 5. If for some t > 0, |w|| 2.+ < pp, Where py €
R*, then there exist constants 5o = 6(py) and 51 = 61(py),
with 8o, 01 € RT such that ||f(w)|z+ < Sollw|co .t + 61
for all t e R.

The next assumption concerns f(w) in (21). Using tech-
niques such as the projection operator to design f(w), we
ensure that || f(w) — f(w)]||s is globally uniformly bounded.

Assumption 6. If for some t > 0, |w|z,t < pp where
oy € RT, then there exist constants ko = k(py) and k1 =
k1 (py), with ko, k1 € RY such that || f(w) — f(w)||ses <
kollwllz ot + K1

Finally, we state a small-gain design condition which is
critical to the stability proof that follows.

Assumption 7. There exists a low pass filter H(s) and a
scalar I' > 0 such that

1= ||(s] = Ap) " "0H(5)| 2, [|(sT = Am) I 2, llelloo (Ko + o)
— [|(sI — Ap) 100 > T (24)
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Fig. 2. DPO illustrated with two different control synthesis methods.

Define a constant p = N/D, where the numerator N is
given by
N = |[(sI = Ap) " 0H (3) ]|, (7]l £ (25)
+ (T = Am) "z llelloo (01 + 1)) + 1(8T = A) ™I, 61

and the denominator D by
D=1-|(sI = Am)"" .00 (26)
— (s = Am) 70 H (5) ||, 1 (s = Am) ™24 llell oo (60 + #io)

We state the main results, similar to Lemma 3 and Theo-
rem 1. The proofs are omitted for brevity.

Lemma 8. Consider the particular half of the observer in (21).
If |lwlle, < p= N/D, with N and D defined in (25) and
(26), then the observer state Wy, satisfies the bound || W]z, <
15T — Au) 2, (o + ) [0l + (51 + ).

Theorem 4. The closed-loop system (20), (21), (22), and (23)
is BIBO stable and the state w of the closed-loop system
satisfies ||wllz.. < p-

VI. SIMULATIONS

Consider the forced wave equation

O (t, ) — 0.10150(t, ) — 20, (t, ) = 10006(t, x) (27)

0.1
0:(t,L =0.1) =0, 6(¢,0) = u(t), CO(t,x) = / 0(t,z)dy
0

Note that the dynamics in (28) are unstable. The DPO is
designed as follows:

Op.it — 010, 100 — 20, 2w = F(t,x) — p(0.160,(p, t) + 20,,(1))
Ont — 0.10h 150 — 20p 20 = —p(0.10,(h, 1) +20,(t))  (28)
0,(t,0) = 6, . (t,0.1) = 0, 1,(t,0) = u(t), 6. (t,0.1) =0,
where p is a design parameter. The controller is designed using

two methods, and the simulations for each design are shown
in Fig. 2. The first controller is designed by approximating

the homogeneous half of the observer corresponding to (28)
by a polynomial, as explained in [12]. The second controller,
of the form (23), is derived for a finite state representation
of (28) obtained using Galerkin’s method. In both cases, as
predicted, the closed-loop system is stable and the tracking
error is almost negligible. The closed-loop system is stable
when p € [450,550] (approximately). This is a consequence
of having chosen the right-hand side of (28) in that particular
form. The polynomial expansion-based controller presented
in this paper has also been demonstrated in experiments on
the bending vibrations of a beam [11], [12]. The closed-loop
stability criterion does not necessarily inform what a good
choice for the RHS would be, and an optimum design of the
RHS remains an open problem.

VII. CONCLUSION

In this paper, we presented a novel control method for
finite as well infinite dimensional systems based on a two-
stage perturbation observer. The control signal is designed
for the homogeneous half of the observer, while “perturbation
prediction” is accomplished by putting together both halves.
The robustness of the controller was proved using the small
gain theorem. In particular, we showed that the £.,-norm of
the system state (over time for finite dimensional systems, and
over space as well as time for PDEs) as well as the control
inputs is uniformly bounded. Simulations were performed to
demonstrate the effectiveness of the controller.
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1. Introduction

For the last decades, scientists are highly interested in designing biomimicry devices performing
as artificial muscles. Compliant and lightweight robotic arms and grippers for tight spaces as well
as energy-efficient actuators for biomimetic locomotion have drawn much attention for study.
To develop a practical biomimic actuator with good performance, choosing suitable materials is
one of the most important and fundamental issues. Smart materials that can be triggered to
deform through certain stimulations are what we desire. Besides, muscle-like features, including
light, soft, and short responding time, are also expected.

In literatures, numerous of smart materials being proposed. From these materials, electroactive
polymers (EAPs) with lightweight and nice compliancy are very suitable to serve as candidates
for biomimic actuator applications. EAPs are polymers that are cable of inducing deformation
under electrical stimulation. The human-muscle like features, such as lightweight, considerable
large displacement, and acceptable response time provide EAPs high potential of artificial muscle
applications.

A group of the EAP family, dielectric elastomers (DEs), has especially drawn our attention due to
their high strain, comparably short response time, low cost, and high electromechanical coupling
efficiency [1-5]. They are often used to fabricate actuators, so called dielectric elastomer
actuators (DEAs). Basically, DEAs are made of incompressible soft dielectric elastomer
membranes sandwiched between compliant electrode layers to form dynamic capacitors. When
electric field is applied across the electrodes, the columbic force generates Maxwell stress [6]
that attracts other electrodes together and squeezes the sandwiched incompressible dielectric
elastomer layer. As a result, the in-plane expansion of DEA can be observed.

Many different designs of soft actuator have been developed with the usage of dielectric
elastomers. Two major ideas were presented in the past: a) actuators with hard frame for
supporting prestretch, and b) using prestretch as stored energy for the recovering of bi-stable
structures. For an example of hard frame supporting DEA, a robotic-arm design that S. Dubowsky
et al. published in 2006 [7] uses frames with deformable joints to support prestretch and, in the
meantime, allowing dielectric elastomers to expand while they electric field is applied. This
structure makes a semi-freestanding actuation that frame-included movement is presented
instead of in-frame-only displacement. Several cells of actuators can be combined together for
multi-degree-of-freedom motion. Similarly, by combing DEAs with mechanical structures, P.
Lochmatter et al. [8] presented a shell bending actuator with a stack of segments. The shell-like
structure has two parallel planar actuators and joint mechanical parts in between. Bending can
be observed once one side of DEAs is stimulated and expanded. Also, series of cells can be
connected together to induce larger bending motion.



On the other hand, one of the bi-stable structure actuator designs named dielectric elastomer
minimum energy system (DEMES) were presented by G. Kofod [9]. With prestretched elastomers
attached on deformable frames, actuators may stay in relaxation phase where elastomers are
crumbled with no electric field applied. And when the actuators are activated, they may deform
into the other stable phase where the energy from applied electric field overcomes the stored
energy provided by prestretch and makes elastomer flat. Later, Petralia and Wood [10] further
presented their work of a curving chain actuator by combining several paper-frame-based DEMES
cells.

In literatures [11,12], prestretch is a method showing great improvement of in-plane actuation
strain of dielectric elastomer actuators. Dielectric elastomer actuators with prestretch can
achieve more than 300% of strain. In all of these designs, prestretch is taking parts in the
fabrication that benefits actuators having large deformation. However, the additional supporting
frames cause operational setbacks. For example, weight and space that the prestretch-support
structures provide are much more than dielectric elastomer itself [13,14]. In addition, non-
uniform prestretch and stress relaxation may affect subsequent actuation [15] and cause local
strain division. From our previous experimental observation of planar DEAs [16], actuation strain
will be influenced by non-uniform prestretch and may be controlled by the biaxial prestretch
ratio. Larger prestretch tends to induce lower actuation strain, and, vice versa, lower prestretch
tends induce higher actuation strain.

To minimize the inconveniences come with prestretch, we present another design of dielectric
elastomer actuator fabrication with no requirement of prestretch and no additional equipment
for supporting prestretch. In this study, freestanding design of DEAs that increases the energy
mass ratio and the flexibility of actuators will be revealed. Our idea is using partial surface
reinforcement on thin planar dielectric elastomer actuators to induce out-of-plane deformation.
When electric field is applied, planar actuators tend to perform in-plane expansion due to the
Maxwell stress while stiffeners added on the surface act as surface reinforcements and constrain
expansion of designed direction. They induce out-of-plane deformation and guide the bending
motions. By applying different configurations of stiffeners on different positions, multiple choices
of three dimensional deformations with different directions and degrees of bending and twisting
are expectable. Since the planar actuator is based on thin dielectric elastomer, a considerable
out-of-plane deformation doesn't require large in-plane expansion that relies on the help of
prestretch.

In Suo’s work [17], they showed experimental results and analytical analysis of applying fiber
reinforcement on the surface of dielectric elastomer actuator. When electric field is applied, the
expansion of elastomer is constrained on the direction of fibers and the actuators perform
unidirectional actuation. Using similar idea, stiffeners in our work with different are attached on



one surface of a planar actuator partially and constraining the expansion on the surface. This will
cause the entire planar actuator deforms out-of-plane significantly.

In this paper, we will show the fabrication of planar actuators. Analytical analysis and FEM
simulation will also be provided to investigate the role of stiffener which can be used to change
the force-stroke characteristics of actuators.

2. Fabrication Procedure

The fabricated device has a square shape of 25x25mm. It contains elastomer layers (3M VHB
F9460PC tapes) and electrode layers (carbon black powder, Super C65, TIMCAL Inc., USA). The
elastomer layers include active area in the middle with 22x22mm and inactive border of 1.5mm
around the edge for sealing and preventing circuit shorting (Figure 1a). A window mask is used
to define the electrode area. Carbon black powder is uniformly brushed over the window mask.
Narrow strips of Aluminum foils are attached to the edge of electrode layer to form external
terminals of the actuator. Finally, another VHB tape is applied on the stack as a cover. The
sequence is repeated for multiple stack modules. The aluminum terminal locations are alternated
to separate positive and negative electrode when fabricating multi-layer structure. As an example,
sketches of 1 (which is the minimum stack of basic DEA design), 2, and 3-cell structure are shown
in Figure 2. After this, the stiffener, 3M Magic Scotch tapes, are cut into long-narrow shape with
3mm width and attached on the surface of the DEA laminates stack (Figure 1b). Different shapes
and configurations of stiffeners are able to apply for more complicated deformation.

0 [— aluminum foil
Electrode
(22x22mm? stiffener on top surface
(width 3mm)
|1 sealing area "
@ (width 1.5mm) ®

Figure 1. Sketches of DEA samples. (a) Top view of unit-cell DEA structure and its measurement
with (b) single strip configuration stiffener in the middle on the top surface.
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Figure 2. Sketches of DEA samples fabrication with side view of different stack configurations. (a)
1-cell (b) 2-cell (c) 3-cell.

3. Experiment

In the experiments, DEA samples were hung from the electrodes terminal and connected to the
high voltage circuit terminal and applied maximum voltages range of 0 — 2.24kV by utilizing a DC-
DC voltage converter (Q-80, EMCO Inc.). The converter has a high DC voltage linear amplifier
range of 0 — 8kV output for 0 — 5V input. The actuator deformations were captured by high-
resolution CCD camera (2448x2048 pixel, Grasshopper, Point Grey Inc.) with an in-situ image
system setup for out-of-plane displacement and curvature analysis.

In this section, experimental results of 1, 2, and 3-cell actuators with 1-strip configuration of
stiffener are shown below.
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Figure 3 shows the bending deformations of the actuators with the increment of amount of
stacking cell from the side view under applied nominal electric field of 0 - 22.4MV/m. When the
input nominal electric field is increasing as well as when more cells are laminated, larger bending
effects were observed consistently in three different actuators. Planar actuators are fabricated
with DEA laminates which contains multi stack of dielectric elastomer actuators. By increasing
the number of laminated cells, higher energy is provided that may be able to generate larger

deformation.

Curvatures were calculated from the captured images in order to define the deformation of
actuators. Partial circles were assumed for every bending motion to ease the measurement and
calculation. The results are shown in Figure 6.
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Figure 3. Experimental results of deformation sequence of 1, 2, 3-cell DEA with 1-strip
configuration of stiffener attached under applied electric field of 0-22.4MV/m.



In addition, surface deformation analysis is also performed by using digital image correlation
technique. The surfaces of planar actuators were patterned with alumina powders. Reference
and deformed images were captured before and after actuation. Images were analyzed by using
commercial software, Vic2D (Correlated Solutions, Inc.) to obtain and evaluate the in-plane finite
strain components. The results of surface deformation analysis will be used to compare with
finite element analysis in order to investigate the role of stiffeners.

4. Analytical analysis

To understand the behavior of this actuator design, we utilized the Timoshenko’s analysis of bi-
metal thermostats [18] and introducing the Maxwell stress instead of the thermal effect to arrive
at the general deformation representation under applied electric field. The derivation of the
analysis is illustrated as follows.

A free-body diagram of stiffener and EAP bi-layer structure can be simply drawn in Figure 4. When
the actuator is activated, total strain of each layer is a summation of strain that caused by
electrical, axial, and bending load. It can be written in equation (1) described with material
modulus, E and geometry parameters of layer i.

& P tE, o +E & +—1 —WiPi+—'vIi 4

total — ©electrical axial bending — electrical |; A (1)
. Wy
: — s

‘111 Layer 1 ! (stiffener)

a, | | Layer 2 __(EAP)
I Wy |

Figure 4. Free-body diagram of stiffener and EAP bi-layer structure represents planar actuator
with surface reinforcement. In this figure, a is the thickness, w is the width, M is the bending
moment, and P is the axial load.

First of all, to define electrical expansion of EAP, we apply Maxwell stress equations shown in
equation (2) and Hooke’s Law assuming in-plane deformation is small and within the elastic



deformation zone. Electrical strain is obtained and written as a function of applied nominal
electric field in equation (3).
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bended beam. Apply this into equation (1) and the bending term of strain can be derived and

From the definition bending moment in beam theory, M = =_, where pis the radius of the

written as in equation (4).
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Since the axial load W,P, = w, P, = P . Besides, the total bending moment can be represented by

axial load multiple by hale of the total thickness as well as the summation of bending moments

on each layer, P 4 ;az =M, + M, . Therefore, axial term of strain can be written as in equation

(5).
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In addition, because of the continuity, total strain at the interface of layer 1 and 2 should be the
same. Therefore, the strain condition after actuation can be described by equation (6).
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Let h = a, + a4, , actuation curvature x, which is equal to inverse of radius p, of this system can

be written as a function of material modulus and geometry parameters in equation (7).
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5. Computational simulation

Finite element method is utilized for the computational simulations. User Material subroutine is
applied with commercial finite element software ABAQUS. Incompressible Neo-Hookean model
is used to represent the elastomer. From literature [19], we know that, elastic energy and
electrostatic energy of dielectric elastomer actuator can be written as a function of stretch 4
and applied nominal electric field @, as equation (8) and (9).

1 2,
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Therefore, the total free energy can be written in equation (10)
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Here, nominal electric field is defined as input voltages used in experiments divided by original
thickness between electrode layers of unit cell DEA (0.1mm).

As a result, the two required material properties in our finite element simulation are shear
modulus and dielectric constant. The dielectric constant of VHB 9460PC tapes is used for 3.21 [20]
and the shear modulus is found to be 0.03 MPa from a uniaxial tensile tests we performed shown
in Figure 5. Assuming our interest deformation is small and in the elastic behavior region, Young'’s
modulus is calculated to be 0.1 MPa from the strain-stress curve. Shear modulus is calculated
and obtained to be 0.03 MPa by applying Hooke’s Law where 0.5 for Poisson’s ratio is employed
assuming incompressible material.



Tensile test of VHB F9460PC tape
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Figure 5. Stain-stress curve of VHB F9460PC tapes from uniaxial tensile test.

In the computational simulation, 3D geometric half model for cantilever laminate was used for
overall structure. Thickness of electrode layers is neglected. For multiple-cell actuator cases, all
active layers were combined into one single layer. A Hybrid 20-node quadratic brick element
employed for each individual layer linked with surface-based tie constraint. One edge of the
sample was anchored and other edges were left free-to-move. Curvatures are used to represent
actuator deformation in simulation. They were assumed as partial circles and calculated by using
the center in-plane and out-of-plane displacement. Figure 6 shows the comparison of
computational and experimental results.

From finite element analysis, the profile of in-plane strain field is obtained to compare with
experimental observation from surface displacement analysis. Results from both analyses (Figure
7) show a band of region that much higher strain occurs. The high strain region represent lateral
strain perpendicular to the stiffener directon concerntrates near the boundary of stiffeners. The
concerntrated strain is caused by stiffener constraints to the elastomer expansion. This shows
the nonliearity of in-plan deformation of this type of actuator which will affect on our analitical
analysis. More detail will be discussed in the next section.
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6. Discussion

For this special design, two cover layers are attached and their effects to the electrical strain have
to be considered. Therefore, a parameter g is requred in the developed analytical solution to

represent how the additonal symmetric cover layers influence the in-plane expansion. g is

defined as the thichness of active layers devided by the total thickness of actuators. For example,
for case of 1, 2, and 3-cell actuators, g is 1/2, 2/3, and 3/4 respectively.

Comparing our analytical solution with experimental data, a fitting parameter in the analytical
solution is found in order to represent all of the nonliearities including inhomogeous deformation
and nonliear electromechanical coupling effect. In this case, the fitting parameter is determined
to be 0.55. Finally, the analytical solution can be written in equation (11). Actuation curvaures
are reprensented as a function of input nominal electric field.
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Using this developed analytical solution, the deformation sequences under serial applied electric
field from experiments are compared and plotted in Figure 8.
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Figure 8. Curvatures from deformation sequences versus applied electric field where the dotted
lines are analytical solutions and square marks are experimental results. The color blue, red, and
black represent 1, 2, and 3 cell actuators respectively.

Force-stroke characteristic of can be obtained from finite element analysis. In the computational
simulation, we first constrain the out-of-plane displacement of the far-end edge opposite to the
anchored edge and then applied electric field on the actuators to certain level. After the electric
field reaches certain level, the edge constraint is removed and replace with uniform out-of-plane
displacement applying on tide-up edge. Reaction forces on every node along the edge are
recorded and summed up in every interested displacement step. The results of the force-stroke
characteristic of a 3-cell actuator stiffener surface reinforcement under different applied nominal
electric fields are shown in Figure 9.

In Figure 9, the solid lines show the force-stroke characteristics of a 3-cell-1-stiffener actuator
are controlled by applied electric field. With increasing applied electric field to higher level,
larger reaction force is observed at zero displacement and larger displacement is observed at
zero reaction force. However, for a free-to-move actuator, nodes at edge are not tied up. This
leads to deviation of reaction force calculated from the summation of each node and the
experimental data converted from actuation curvatures which are represented in solid circles in
the plot.

Figure 9. Force-stroke characteristics of a 3-cell-1-stiffener actuator under applied electric field
of 17600 (green), 19200 (red), and 20800 V/mm (blue).

7. Conclusion

In this paper, we shared an idea of freestanding planar actuators based on dielectric elastomers
capable of out-of-plane deformation by using partial stiffener reinforcement on the surfaces.
With our concept, no additional devices to support prestretch are required. Deformation of the
actuator can be designed is by using different configurations of surface stiffener reinforcements.
Experiments provided the actuators performances. In addition, surface displacement analyses
were employed in order to assist understanding how stiffeners induce deformation to planar
actuators. An effective band around stiffener constraints was discovered which leads to
inhomogeneous deformation in this case. The analytical analysis was provided for future control
strategies. Finite element framework was also developed which could be used to investigate the
role of stiffeners and force-stroke characteristics of actuators. It could also be employed to study
more complex 3D motion based on this actuator design in our future works.
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Introduction

Dielectric elastomers (DEs) are a type of electroactive polymers that has been studied for many
years in the booming field of biomimicry devices development. The high strain, comparably short
response time, low cost, and high electromechanical coupling efficiency [] make them a strong
candidate of material selection as artificial muscles. They are often used to fabricate actuators,
so called dielectric elastomer actuators (DEAs). DEAs are made of soft dielectric elastomer
membranes sandwiched by compliant electrode layers to form dynamic capacitors. The columbic
force generates Maxwell stress [] when electric field is applied across the thickness direction.
Maxwell stress attracts both electrode layers together and compress the middle incompressible
elastomer which will introduce the in-plane expansion of DEAs.

The idea of fabricate planar actuators based on dielectric elastomer has been discussed in
electroactive polymer society for years []. Due to the mechanism of dielectric elastomer actuators,
motion of in-plane expansion is very direct and easy to achieve. However, in order to broaden
the application possibilities and categories, it is important to study structures that can induce 3-
dimentional motion. Several different designs were presented in the literatures.

Since it has been shown that prestretch is a method capable of greatly improving in-plane
actuation strain of dielectric elastomer actuators [], a branch of planar dielectric elastomer
actuators design is based on prestretched membrane. P Lochmatter and G Kovacs demonstrated
an idea of shell-like actuators [] [] using two parallel prestretched dielectric elastomer actuators
connected by hinge structures. When the actuator on one side of the shell is activated, shell is
capable of bending. The core structure of hinge can also be constructed in different ways, such
as an array of spheres. This may help the shell-like actuator present biaxial deformations for more
complicated motion. In their later studies [], the actuator can be further improved by several
adjustments, for example, multi layers dielectric elastomers and reinforced carbon rods which
support the prestretch. Thanks to the prestretch, these bending devices showed results of large
out-of-plane deformation and, more impressively, outstanding blocking force from the bending
motions. Besides, because of the prestretch, higher input electric field can be applied and, as a
result, actuators demonstrate even better bending characteristics. However, the additional
supports also cause unwanted setbacks that conflicts the goal of developing light weight and
flexible actuators when employing electroactive polymers at the first place. For example, support
structures for prestretch occupy much more weight and space than elastomer itself [] and limited
the degree-of-freedom of deformations by the supporting and connecting structures. This branch
of design is featuring high value performances of deformation with a trade-off of losing flexibility
and energy-to-mass/space ratio by using additional rigid prestretch-support frames.

Another approach to induce out-of-plane deformation from planar actuators is named dielectric
elastomer minimum energy system (DEMES). The idea was first presented by G Kofod et al. []



which demonstrated a clever strategy reversibly utilizing prestretch. Dielectric elastomers are
prestretched and attached on supporting structures which are inextensible but pliant. Usually
thin membranes of plastic slides or papers are employed. Without additional energy input, the
elastic energy used to prestretch DE films will transfer to the outer frame and causes the entire
system to buckle. Once electric field is applied to the system, the expansion of elastomer will
flatten the system and reverse the buckling. The system motions are defined by the frame
structure. Different configurations of frames may induce different shapes of buckling. Due to the
usage of prestretch, deformation and output blocking force of the system is comparably large [].
G Kofod et al. [] showed an application of griping actuator in their study demonstrated the
significant force that this system may provide. Besides, the pliant frames give the system higher
flexibility comparing to rigid frames and extend broader application. Despite the beauty features
of DEMES, a disadvantage appears in deformation shape prediction with difficulty and inaccuracy.
M T Petralia and R J Wood presented a structure for highly-deformable soft robotic system based
on this strategy. In the pictures from their study, we can observe noticeable differences of
deformation even with the same support-frame shape.

Other than the above designs, another approach is the unimorph DEAs. In the early study of
dielectric elastomer actuators [], a simple idea to provide unimorph bending effect by attaching
extendable DE with stiff substrate was proposed. In 2011, O A Araromi et al. [] [] introduced a
comprehensive study cover from an unique spay-deposited fabrication to actuators
characterization. In this their design, multiple layers of DE film were spay deposited on a
substrate membrane with compliant electrode in between each layer and no employment of
prestretch. The stiffer substrate constrained one side of the planar actuator expansion and
induced overall bending. This bending device showed considerable deflection but less blocking
force. Nevertheless, without the requirement of prestretch supporting frames, the actuator is
lighter and more flexible and still performing noticeable deformation.

To not only keep the existed advantages of unimorph DEAs such as light weight and large
deflection but also further improve the flexibility of actuator motions, we introduced a strategy
to fabricate planar dielectric elastomer actuators capable of out-of-plane deformation with no
requirement of prestretch []. Instead of applying fully covered stiffer substrate to urge bending,
partially reinforcement of stiffener segments were used in our design. Small segments of stiffener
reinforcement are able to provide even more complicated 3-dimentional deformation to a planar
actuator and at, the meantime, featuring light weight and high energy-to-mass ratio. In this study,
we will provide deeper understanding of the role of stiffeners and their interactions with
dielectric elastomers. By varying stiffener configurations, we are able to change the
characteristics of actuators, such as deflection and reaction force, while keeping bending stiffness
the same. This enlarges the complexity of surface motion to design planar actuators.



Frabrication and Experiment

To study the role of stiffener, we planed to fix the geometry parameter of bending stiffeness and
vary perodicity of stiffeners. Two cases were compared: (a) sigle stiffener and (b) split siffener
while maintainting the totale width. Following the detail of fabrication procedure in our privious
work [], two 3-cell planar actuators were fabricated. A 3-cell planar actuator is composed by
stacking three unit cells of actuator. Each unit cell includes two layers of VHB 9460PC tape (50um
thick each) in the middle and sandwitched by compliant electrode layers where carbon black
particles (Super C65, TIMCAL Inc., USA) were employed. Two additional VHB tapes were used to
cover up the stacked actuator for protection that makes a total thickness of 0.4mm for a 3-cell
planar actuator (thickness of electode layers were neglected). One of the planar actuators was
attached with one 3mm-wide stiffener (3M Magic scotch tapes) on the surface and the other
actuator was attached with three 1Imm-wide stiffeners equally seperated as shown in Figure 1b
and 1c. Both actuators were connected to the high voltage circuit with applied voltages range of
0 — 2.24kV by employing a DC-DC voltage converter (Q-80, EMCO Inc.). High-resolution CCD
camera (2448x2048 pixel, Grasshopper, Point Grey Inc.) with an in-situ image system setup was
utilized to capture the side view of actuator deformations. The deformation sequence of 3-cell
DEA with stiffener configuration of 1 and 3 segments under applied nominal electric field, @, of

0-22.4kV/mm is shown in Figure 2. Besides, actuation curvatures were measured from the
captured images and shown in square marks in Figure 3.
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Figure 1. Schematic diagram of (a) side view of 3-cell planar actuator and two DEA samples with
(b) singe stiffener and (c) triple split stiffeners attached.
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Figure 2. Experimental results of deformation sequence of 3-cell DEA with stiffener configuration
of 1 and 3 segments attached under applied electric field of 0-22.4MV/m.
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Figure 3. Actuation curvatures under applied electric field of 0-22.4kV/mm of 1 (black) and 3 (red)
segments of stiffeners attached on a 3-cell DEA. Square marks and dotted lines represent results
from experiments and finite element analysis respectively.



Computational simulation

Utilizing the framework we developed that simulates the coupling electromechanical behavior of
dielectric elastomer actuators [], we performed in computational works of both single and
splitting stiffeners cases. In the simulation, overall structure was based on half model of 3D
geometric cantilever laminate. All active layers were combined into one single layer and, in the
meantime, thickness of electrode layers was neglected. A Hybrid 20-node quadratic brick
element was employed for each individual layer linked with surface-based tie constraint. One
edge of the sample was anchored and other edges were left free-to-move. Curvatures were used
to represent actuation motion. Curvatures were assumed as partial circles and calculated based
on the in-plane and out-of-plane displacements of the central point at the end free edge. The
deformation results of both single and three stiffeners cases of actuator are shown in Figure 3
with respect of serial input nominal electric field up to 22.4 kV/mm. The side view of deformation
sequence in simulation is shown in Figure 4. Strain field of the actuators after electric force
stimulated can also be obtained and shown in Figure 5.

1-segment _ T
3-segment //)JJQ
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Figure 4. Deformation sequence in finite element simulation of 3-cell planar actuator with 1 and
3 segments of stiffeners under nominal electric field of 0-22.4 kV/mm.
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Figure 5. Strain field of 3-cell planar actuator with 1 segment (a) and 3 segments (b) of stiffener
under nominal electric field of 22.4 kV/mm.

Discussion

From the experiments, we observed that the actuation curvatures are controled by the
configuration of attached stiffeners. In the two cases we experimentally performed, the total
bending stiffness was controled to be the same by maintaining the total width of stiffeners.
However, different characteristics were revealed in two actuators. With increasing precocity of
stiffeners, larger curvatures can be achieved. To investigate this phenomenon, we go through
finite element simulation from several aspects. First of all, if we look at the general deformation
shapes shown in Figure 6, bending is not uniformly. Buckling occurred between the stiffener
edges and the end-edge of actuator. For a bending device, this kind of buckling is not what we
appreciate. It wastes energy on unwanted direction (y-axis) deformation. As a matter of fact,
increasing precocity of stiffener is able to limit the unwanted deformation. And doing by this,
actuation closer to homogeneous bending will be observed. And because of deformation occurs
on the bending direction (x-axis) instead, larger bending curvature can be achieved.



1-segment

i

i
I
T
i

L
5
X

5

5%
0
\*{t\‘
R

i

at

‘\\“.

Wi
R

A
i
A

Figure 6. Side view and cross-sectional view of half sample of 3-cell actuator attached with 1, 3,
and 5 segments of stiffeners in finite element simulation under applied nominal electric field of
22400 V/mm.

Secondly, strain field from finite element simulation shown in Figure 5 noted strain concentration
around the stiffener/elastomer junctions. That is to say, in-plane expansion is not homogenous
and has localization related to the location of stiffeners. Each stiffener contributes the extra
region in addition to its own width. Therefore, multiple stiffeners are able to contribute more
localization and constrain larger region of in plane deformation. This gives us higher value of
effective width that is actually inducing bending leads to larger actuation curvatures.

Reviewing analytical analysis in our previous work [] based on the theory of bi-material
thermostats, axial strain is one of the main driving factor that urge bending and was assumed to
be uniform. Equation we used to represent actuation curvatures x as a function of input nominal
electric field @, was written as equation (1) where ¢¢, is dielectric constant of the elastomer
multiplies vacuum permittivity; E, | , and a are Young’s modulus, moment of inertia, and the
layer thickness; subscripts 1 and 2 represent layer stiffener and layer dielectric elastomer
respectively. his the total thickness and £ is a geometry factor that varies with the amount of
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However, stiffeners in our design are not fully covering the entire surface and, as a result, only
approving an effective region of constraint. A schematic diagram in Figure 7 illustrates the idea
of partial axial deformation caused by single stiffener within an effective width. The effective
width should be used to modify our analytical analysis. Furthermore, the additional fitting
parameter, 0.55, we is found to be caused by this modification. The modified analytical solution
is shown in equation (2) where effective width wef varies with different cases of stiffener
configuration.
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k(D) =—= ! (2)
P

), I \ Ae e o - - _

7 y 7 A

7 ' 7 L
vy : w, 7 W

9 | Z | eff
Y/ | :

y : y — M |

7 T 7

Figure 7. Schematic diagram of narrow strip stiffener constrains only part of the axial expansion
of EAP. (a) In ideal case of analytical solution, uniform in-plane expansion of EAP is expected.
Total EAP width, w, are affected by stiffener. (b) In real case, only partially constraint is caused
by narrow stiffener reinforcement and wesis required to replace wa.

Fitting analytical solution with experiential results, effective widths of single and three stiffeners
were figured to be 11mm and 21mm respectively. The effective width can be found through finite

where w is

element simulation or, for this case, W, = W_jqoer +W. +(2n) itener

— YWstiffener sealing region Vvlocaliztion ’

the total width of stiffeners, W

ealing region 15 the sealing region from the actuator design which is

3mm total, nis the number of stiffeners, and w, is the local constraint width caused by

ocaliztion

each stiffener, in this case equal to 2.5mm. Results are shown in Figure 8.
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Figure 8. Fitting actuation curvatures from analytical analysis with experimental results.
Actuation curvatures shows deformation under applied nominal electric field of 0-22.4kV/mm of
1 (black) and 3 (red) segments of stiffeners. Square marks and solid lines represent experiments
and finite element analysis respectively.

Theoretically, effective width can be increased unlimitedly; however, after certain amount of
stiffeners, the localization effective region caused by each stiffener may become overlapped. The
total effective width is going to be saturated with limited actuation presentation. We simulated
the effect of increasing the numbers of split stiffeners from one to five in finite element model
as shown in Figure 9Figure 5. The increases of actuation curvatures become smaller each time
we split the stiffener into narrower segments. It saturated at four segments under maximum
applied electric field of 22400 V/mm.
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Figure 9. Finite element results of actuation curvature versus applied nominal electric field of 3-
cell planar actuator with different numbers of split stiffeners from one to five.

In addition, total elastic energy was obtained from finite element analysis (Figure 10). The results
show that the energy can be considered as no change with different numbers of stiffener we use.
The energy doesn’t increase with higher actuation curvatures. This tells us only the efficacy of
energy is changing. Actuation strain is more properly used in the bending direction in multiple-
stiffener case and leading to higher bending curvatures.
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Figure 10. Finite element results of total elastic energy versus applied nominal electric field of 3-
cell planar actuator with different numbers of split stiffeners from one to five.

Finally, force-stroke characteristics can also be obtained from finite element simulation. Take
applying electric field of 20800 V/mm as an example which shown in Figure 11, the increases of
stiffener periodicity can be used to adjust different force-stroke characteristics. More stiffeners
yield higher blocking force as well as larger deflection of this bending device.
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Figure 11. Force-stroke characteristics of 3-cell actuator attached with 1, 3, and 5 segments of
stiffeners in Finite element simulation under applied electric field of 20800 V/mm comparing with
the case of fully covered continuous stiffener.

Conclusion

In this paper, we investigate the role of stiffener in our planar actuator design. Stiffeners bring
the ability out-of-plane deformation to planar dielectric elastomer actuators. Each small segment
constrains a localized in plane expansion of elastomer and causes axial stain that leads the
actuator to bend. Experimental and finite element simulation results are provided to investigate
how changing stiffener configuration while keeping the bending stiffness may influence actuation
curvatures. Moreover, force-stroke characteristics can be adjusted by varying stiffener
periodicity as well. Modified analytical analysis is also provided to describe the effect of stiffener
reinforcement.



